Home
Class 12
MATHS
veca xx [(vecr-vecb)xxveca]+vecb xx [(ve...

`veca xx [(vecr-vecb)xxveca]+vecb xx [(vecr-vecc)xxvecb]+vecc xx [(vecr-veca)xxvecc]=0 and veca , vecb and vecc` are unit vector mutually perpendicular to each other then the `vecr` is :

A

`(veca-vecb-vecc)/2`

B

`(veca-vecb+vecc)/2`

C

`(veca+vecb+vecc)/2`

D

`(veca+vecb-vecc)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given vector equation, we start with the expression: \[ \vec{a} \times [(\vec{r} - \vec{b}) \times \vec{a}] + \vec{b} \times [(\vec{r} - \vec{c}) \times \vec{b}] + \vec{c} \times [(\vec{r} - \vec{a}) \times \vec{c}] = 0 \] where \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are unit vectors that are mutually perpendicular. ### Step 1: Apply the Vector Triple Product Identity Using the vector triple product identity, we know that: \[ \vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C}) \vec{B} - (\vec{A} \cdot \vec{B}) \vec{C} \] We apply this identity to each term in the equation. 1. For the first term: \[ \vec{a} \times [(\vec{r} - \vec{b}) \times \vec{a}] = (\vec{a} \cdot \vec{a})(\vec{r} - \vec{b}) - (\vec{a} \cdot (\vec{r} - \vec{b}))\vec{a} \] Since \(\vec{a}\) is a unit vector, \(\vec{a} \cdot \vec{a} = 1\): \[ = (\vec{r} - \vec{b}) - (\vec{a} \cdot \vec{r} - \vec{a} \cdot \vec{b})\vec{a} \] 2. For the second term: \[ \vec{b} \times [(\vec{r} - \vec{c}) \times \vec{b}] = (\vec{b} \cdot \vec{b})(\vec{r} - \vec{c}) - (\vec{b} \cdot (\vec{r} - \vec{c}))\vec{b} \] Again, since \(\vec{b}\) is a unit vector: \[ = (\vec{r} - \vec{c}) - (\vec{b} \cdot \vec{r} - \vec{b} \cdot \vec{c})\vec{b} \] 3. For the third term: \[ \vec{c} \times [(\vec{r} - \vec{a}) \times \vec{c}] = (\vec{c} \cdot \vec{c})(\vec{r} - \vec{a}) - (\vec{c} \cdot (\vec{r} - \vec{a}))\vec{c} \] And since \(\vec{c}\) is a unit vector: \[ = (\vec{r} - \vec{a}) - (\vec{c} \cdot \vec{r} - \vec{c} \cdot \vec{a})\vec{c} \] ### Step 2: Combine All Terms Now we combine all three results: \[ [(\vec{r} - \vec{b}) - (\vec{a} \cdot \vec{r} - \vec{a} \cdot \vec{b})\vec{a}] + [(\vec{r} - \vec{c}) - (\vec{b} \cdot \vec{r} - \vec{b} \cdot \vec{c})\vec{b}] + [(\vec{r} - \vec{a}) - (\vec{c} \cdot \vec{r} - \vec{c} \cdot \vec{a})\vec{c}] = 0 \] ### Step 3: Simplify the Equation Grouping the terms gives: \[ 3\vec{r} - (\vec{b} + \vec{c} + \vec{a}) - [(\vec{a} \cdot \vec{r})\vec{a} + (\vec{b} \cdot \vec{r})\vec{b} + (\vec{c} \cdot \vec{r})\vec{c}] = 0 \] ### Step 4: Solve for \(\vec{r}\) Rearranging the equation leads to: \[ 3\vec{r} = \vec{a} + \vec{b} + \vec{c} + [(\vec{a} \cdot \vec{r})\vec{a} + (\vec{b} \cdot \vec{r})\vec{b} + (\vec{c} \cdot \vec{r})\vec{c}] \] ### Step 5: Final Expression for \(\vec{r}\) Assuming \(\vec{r} = x\vec{a} + y\vec{b} + z\vec{c}\), we can express: \[ \vec{r} = \frac{1}{2}(\vec{a} + \vec{b} + \vec{c}) \] ### Conclusion Thus, the value of \(\vec{r}\) is: \[ \vec{r} = \frac{1}{2}(\vec{a} + \vec{b} + \vec{c}) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If (veca xx vecb) xx vecc = veca xx (vecb xx vecc) where veca, vecb and vecc are any three vectors such that veca.vecb =0, vecb.vecc=0 then veca and vecc are:

[(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca) (veccxxveca) xx (veca xx vecb)] is equal to ( where veca, vecb and vecc are non - zero non- colanar vectors).

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc) , where veca, vecb and vecc are any three vectors such that veca.vecb ne 0, vecb.vecc ne 0 , then veca and vecc are:

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .

Prove that veca\'xxvecb\'+vecb\'xxvecc\'+vecc\'xxveca\'=(veca+vecb+vecc)/([veca vecb vecc])