Home
Class 12
BIOLOGY
Cyt a3 has...

`Cyt a_3` has

A

Fe and Mg

B

Cu and Mg

C

Fe and Cu

D

Fe, Mg and Cu.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Cyt a_(3) possesses

Let vec a=a_1 hat i+a_2 hat j+a_3 hat k , vec b=b_1 hat i+b_2 hat j+b_3 hat k and vec c=c_1 hat i+c_2 hat j+c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a and vec b . If the angle between a and b is pi/6, then prove that |[a_1,a_2,a_3],[b_1,b_2,b_3],[c_1,c_2,c_3]|^2=1/4(a_1 ^2+a_2 ^2+a_3 ^2)(b_1 ^2+b_2 ^2+b_3 ^2)

If vec a=a_1 hat i+a_2 hat j+a_3 hat k ; vec b=b_1 hat i+b_2 hat j+b_3 hat k , . vec c=c_1 hat i+c_2 hat j+c_3 hat k and [3 vec a+ vec b """ 3 vec b+ vec c """" 3 vec c+ vec a]=lambda[vec a vec b vec c] , then find the value of lambda/4 .

If a_0, a_1, a_2, a_3 are all the positive, then 4a_0x^3+3a_1x^2+2a_2x+a_3=0 has least one root in (-1,0) if (a) a_0+a_2=a_1+a_3 and 4a_0+2a_2>3a_1+a_3 (b) 4a_0+2a_2<3a_1+a_3 (c) 4a_0+2a_2=3a_1+a_0 and 4a_0+a_2lta_1+a_3 (d) none of these

If the equation z^4+a_1z^3+a_2z^2+a_3z+a_4=0 where a_1,a_2,a_3,a_4 are real coefficients different from zero has a pure imaginary root then the expression (a_3)/(a_1a_2)+(a_1a_4)/(a_2a_3) has the value equal to

Let lta_ngt be the sequence defined by a_1=3 and a_n =3a_(n-1)+2 for all n gt1 ..Find a_3 .

For all real values of a_0.a_1,a_2,a_3 satisfying a_0x+a_1x^2/2+a_2x^3/3+a_3x^4/4=0 , the equation a_0+a_1x+a_2x^2+a_3x^3=0 has a real root in the interval

Suppose a_1, a_2, are real numbers, with a_1!=0. If a_1, a_2,a_3, are in A.P., then (a) A=[(a_1,a_2,a_3),(a_4,a_5,a_6),(a_5,a_6,a_7)] is singular (where i=sqrt(-1) ) (b)The system of equations a_1x+a_2y+a_3z=0,a_4x+a_5y+a_6z=0,a_7x+a_8y+a_9z=0 has infinite number of solutions. (c) B=[(a_1,i a_2),(ia_2,a_1)] is non-singular (d)none of these

If the coefficient of-four successive termsin the expansion of (1+x)^n be a_1 , a_2 , a_3 and a_4 respectivel. Show that a_1/(a_1+a_2)+a_3/(a_3+a_4)=2 a_2/(a_2+a_3)

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot