Home
Class 11
MATHS
The trigonometric expression : cot^2[(s...

The trigonometric expression : `cot^2[(sectheta-1)/(1+sintheta)]+sec^2theta[(sintheta-1)/(1+sectheta)]` has the value

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(sec^2theta-1)/(sectheta)

Prove that sectheta(1-sintheta)(sectheta+tantheta)=1

sqrt((1-sintheta)/(1+sintheta))=sectheta-tantheta

Prove that: (sectheta-1)/(sectheta+1)=((sintheta)/(1+costheta))^2

Prove the trigonometric identities: (1-sintheta)/(1+sintheta)=(sectheta-tantheta)^2

Prove that (1+sintheta)/costheta+costheta/(1+sintheta)=2sectheta

Prove that (1+sintheta)/costheta+costheta/(1+sintheta)=2sectheta .

Prove that : (sectheta+tantheta-1)/(tantheta-sectheta+1)=(costheta)/(1-sintheta)

prove (tantheta +sectheta-1)/(tantheta-sectheta+1) = (1+sintheta)/(costheta)

Find the value of (sintheta)/(cosectheta)+(costheta)/(sectheta)-1