Home
Class 12
MATHS
The value of the limit lim(x to -oo) (sq...

The value of the limit `lim_(x to -oo) (sqrt(4x^(2) - x + 2x))` is

A

`-oo`

B

`(-1)/(4)`

C

`0`

D

`(1)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
D

Given form is `(rarr oo - rarr oo)` reverse rationalizing the expression to convert it to `(rarr oo)/(rarr oo)`
`sqrt(4x^(2)-x)+2x xx ((sqrt(4x^(2)-x)-2x))/((sqrt(4x^(2)-x)-2x))`
`=(4x^(2)-x-4x^(2))/(sqrt(4x^(2)-x)-2x)=(-x)/(sqrt(4x^(2)-x)-2x)implies (-x)/(|x|sqrt(4-(1)/(x)-2x))("Taking" sqrt(x^(2)=)|x|)`
Now as `x rarr - oo |x| = - x ` thus the expression becomes
`implies (-x)/(-xsqrt(4-(1)/(x)-2x))=(1)/(sqrt(4-(1)/(x)+2)) "put" x = - oo = (1)/(2+2) =(1)/(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo) (x-sqrt(x^2-1))

lim_ (x rarr-oo) (sqrt (4x ^ (2) -7x) + 2x)

lim_ (x rarr oo) (sqrt (x ^ (2) -8x) + x)

Find the value of the limit lim_(x->0) ((sqrt(x^(2)-x+1)-1)/(x))

lim_ (x rarr oo) (sqrt (x ^ (2) + x) -x)

lim_ (x rarr oo) (x-sqrt (x ^ (2) + x))

The value of lim_(x to oo) (sqrt(x^2+1)-sqrt(x^2-1)) is

The value of the limit lim_(x rarr oo)((x-1)/(x+3))^(x+2) is

lim_(x rarr+oo)x(sqrt(x^(2)+1)-x)