Home
Class 12
MATHS
Then number of local maxima of the funct...

Then number of local maxima of the function `f (x) = x - sin x ` is :

A

Infinitely many

B

Two

C

One

D

Zero

Text Solution

Verified by Experts

The correct Answer is:
D

f(x) =1 - cos x =0 `{:(cosx =1 ),(x=2n pi):}` also `{:(f(x)=sinx),(f(2n pi )=0):}`
Also we can say f(x) =1 -cos x =2 `cos^(2)"" (x)/(2) gt= 0` thus there is no local maxima or minima (Non-decreasing)
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = sin^(3)x - 3 sinx + 6, AA x The in (0, pi) .number of local maximum/maxima of the function f(x) is

Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3) What is the number of point of local maxima of the function f(x)?

Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3). What is the number of points of local minima of the function f(x)? What is the number of points of local maxima of the function f(x)?

Find the points of local maxima/minima of function f(x) = x ln x

Find the point of local maxima or local minima of the function f(x) = (sin^(4) x + cos^(4) x) " in " 0 lt x lt (pi)/(2)

The points of local maxima or local minima of the function f(x) = x^(3) + x^(2) + x + 1 are:

Find the points of local maxima/minima of function f(x) = - (x - 1)^(3) (x + 1)^(2)

The total number of local maxima and local minima of the function f(x) = {{:( (2 + x)^(3) "," , -3 lt x le -1) , (x^(2//3) "," , -1 lt x lt 2):} is