Home
Class 12
MATHS
The function f(x) = sin ^(4)x+ cos ^(4)x...

The function `f(x) = sin ^(4)x+ cos ^(4)x ` increases, if

A

`0 lt x lt (pi)/(8)`

B

`(pi)/(4) lt x lt ( 3pi)/( 8)`

C

`(3pi)/(8) lt x lt ( 5pi)/( 8)`

D

`(5pi)/( 8) lt x lt (3pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
B

Now, `(4pi)/(8)gt(3pi)/(8) " " thereforef(x)"in increasing in" ((pi)/(4),(3pi)/(8))`
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=sin^(4)x+cos^(4)x increasing if

If f(x) =sin^(4)x+cos^(4)x increases, if

The function f(x) = sin x + cos x will be

The function f(x)=sin^4x +cos ^4 x increases if

Show that the function f(x)=sin^(4) x+ cos^(4) x (i) is decreasing in the interval [0,pi/4] . (ii) is increasing in the interval [pi/4,pi/2] .

Period of f(x)=sin^(4)x+cos^(4)x

The function f(x)=(sin^(4)x+cos^(4)x)/(x+tan x) is :

The function (sin^(4)x+cos^(4)x)/(x+tan x) is