Home
Class 12
MATHS
If f'(x) = f(1 - x) and f(x) is differen...

If `f'(x) = f(1 - x)` and f(x) is differentiable are every real value of x then the value of `f' ((1)/(2)) + f' ((1)/(4)) + f' ((3)/(4))` is _____

Text Solution

Verified by Experts

The correct Answer is:
0

f(x) =f(1-x) `rArr f (x) = - f(1 - x)`
at `x = (1)/(2)`
`f.((1)/(2)) = - f. (1-(1)/(2))`
`f. ((1)/(2)) = - f. ((1)/(2)) = 0`
`rArr f.((1)/(2)) = 0 " " …. (i)`
Also `x = (1)/(4)`
`f.((1)/(4)) = - f.((3)/(4))`
`rArr f((1)/(4)) + f.((3)/(4)) = 0 " " ....(ii)`
By (i) and (ii)
`f.((1)/(2)) + f.((1)/(4)) + f.((3)/(4)) = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of f(f(-2)) , if f(x)=(x)/(x+1)

If f(x)=2x^(2)+6x-1 , then the value of (f((3)/(4))+1)/(f((3)/(4))-1) is

If f(x)=ax+b and the equation f(x)=f^(-1)(x) be satisfied by every real value of x, then

If f(x)=(x^2-1)/(x^2+1) , for every real x , then the maximum value of f

If f(x)=(x+1)/(x-1) , then the value of f(f(2)) is

If f(x)=sin theta.x+a and the equation f(x)=f^(-1)(x) is satisfied by every real value of x, then