Home
Class 12
MATHS
The integer ‘n’ for which the value of l...

The integer ‘n’ for which the value of `lim _( x to oo) (( 1- cos x) (e ^(x) - cos x) - (x ^(3))/( 2))/( x ^(n))` is a finite non zero number, is____.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to analyze the expression given: \[ \lim_{x \to \infty} \frac{(1 - \cos x)(e^x - \cos x) - \frac{x^3}{2}}{x^n} \] ### Step 1: Expand \(1 - \cos x\) and \(e^x - \cos x\) The Taylor series expansion for \( \cos x \) around \( x = 0 \) is: \[ \cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{24} - \cdots \] Thus, \[ 1 - \cos x \approx \frac{x^2}{2} - \frac{x^4}{24} + \cdots \] The Taylor series expansion for \( e^x \) is: \[ e^x \approx 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots \] So, \[ e^x - \cos x \approx (1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots) - (1 - \frac{x^2}{2} + \frac{x^4}{24} - \cdots) \] This simplifies to: \[ e^x - \cos x \approx x + x^2 + \frac{x^3}{6} - \frac{x^4}{24} + \cdots \] ### Step 2: Combine the expansions Now we can combine the two expansions: \[ (1 - \cos x)(e^x - \cos x) \approx \left(\frac{x^2}{2}\right)\left(x + x^2 + \frac{x^3}{6} - \frac{x^4}{24}\right) \] Calculating this product, we focus on the leading term: \[ \approx \frac{x^2}{2} \cdot x = \frac{x^3}{2} \] ### Step 3: Substitute back into the limit expression Now we substitute this back into our limit expression: \[ \lim_{x \to \infty} \frac{\left(\frac{x^3}{2}\right) - \frac{x^3}{2}}{x^n} \] This simplifies to: \[ \lim_{x \to \infty} \frac{0}{x^n} = 0 \] ### Step 4: Consider higher-order terms Next, we need to consider the next leading term from the product \( (1 - \cos x)(e^x - \cos x) \). The next term will be: \[ \frac{x^2}{2} \cdot x^2 = \frac{x^4}{2} \] Thus, we have: \[ \lim_{x \to \infty} \frac{\frac{x^4}{2}}{x^n} \] ### Step 5: Find the value of \(n\) For the limit to be a finite non-zero number, we need: \[ \frac{x^4}{2x^n} = \frac{1}{2} x^{4-n} \] This will be finite and non-zero if \(4 - n = 0\), which gives: \[ n = 4 \] ### Conclusion The integer \(n\) for which the limit is a finite non-zero number is: \[ \boxed{4} \]

To solve the limit problem, we need to analyze the expression given: \[ \lim_{x \to \infty} \frac{(1 - \cos x)(e^x - \cos x) - \frac{x^3}{2}}{x^n} \] ### Step 1: Expand \(1 - \cos x\) and \(e^x - \cos x\) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The least integer n for which lim_(x to 0) ((cos x - 1) (cos x - e^(x)))/(x^(n)) is a finite non-zero number is

The integer n for which the lim_(x to 0)(cos^(2)x-cosx-e^(x)cosx+e^(x)-(x^(3))/2)/(x^(n)) is a finite non-zero number is

Find the integral value of n for which lim_(x rarr0)(cos^(2)x-cos x-e^(x)cos x+e^(x)-(x^(3))/(2))/(x^(n)) is a finite nonzero number

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

The integer n for which lim_(x rarr0)((cos x-1)(cos x-e^(x)))/(x^(n)) is a finite non- zero number is:

The integer n for which lim_(x rarr0)((cos x-1)(cos x-e^(x)))/(x^(n)) is finite nonzero number is

lim_ (n rarr oo) ((cos x) / (2) * (cos x) / (4) (cos x) / (2 ^ (n)))

The value of lim_(x rarr oo)(x^(n))/(e^(x))