Home
Class 12
MATHS
If f (x) = {{:([x], , 0 le x lt 3),(|[x]...

If `f (x) = {{:([x], , 0 le x lt 3),(|[x]+1|, , - 3 lt x lt 0):},` where [.] denotes greatest integer function, then number of point at which `f (x)` is discontinuous in `(-3,3),` is equa to ________.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of points at which the function \( f(x) \) is discontinuous in the interval \((-3, 3)\), we will analyze the function piece by piece. The function is defined as follows: \[ f(x) = \begin{cases} 0 & \text{for } 0 \leq x < 3 \\ |[x] + 1| & \text{for } -3 < x < 0 \end{cases} \] where \([x]\) denotes the greatest integer function. ### Step 1: Identify the intervals and their corresponding function values 1. **For \( -3 < x < 0 \)**: - We will break this interval into smaller segments based on the values of \([x]\): - **For \( -3 < x < -2 \)**: Here, \([x] = -3\) \[ f(x) = |-3 + 1| = | -2 | = 2 \] - **For \( -2 \leq x < -1 \)**: Here, \([x] = -2\) \[ f(x) = |-2 + 1| = | -1 | = 1 \] - **For \( -1 \leq x < 0 \)**: Here, \([x] = -1\) \[ f(x) = |-1 + 1| = | 0 | = 0 \] 2. **For \( 0 \leq x < 3 \)**: - Here, \( f(x) = 0 \). ### Step 2: Identify points of discontinuity Now we will check the points where the function changes its definition or where the greatest integer function changes its value: - The critical points in the interval \((-3, 3)\) are \( -3, -2, -1, 0, 1, 2 \). ### Step 3: Evaluate continuity at each critical point 1. **At \( x = -3 \)**: - Left limit: Not defined (as \( x \) approaches \(-3\) from the left) - Right limit: \( f(-3) = 2 \) - **Discontinuous**. 2. **At \( x = -2 \)**: - Left limit: \( f(x) = 2 \) (as \( x \) approaches \(-2\) from the left) - Right limit: \( f(-2) = 1 \) - **Discontinuous**. 3. **At \( x = -1 \)**: - Left limit: \( f(-1) = 0 \) - Right limit: \( f(-1) = 0 \) - **Continuous**. 4. **At \( x = 0 \)**: - Left limit: \( f(0) = 0 \) - Right limit: \( f(0) = 0 \) - **Continuous**. 5. **At \( x = 1 \)**: - Left limit: \( f(1) = 0 \) - Right limit: \( f(1) = 0 \) - **Continuous**. 6. **At \( x = 2 \)**: - Left limit: \( f(2) = 0 \) - Right limit: Not defined (as \( x \) approaches \( 2 \) from the right) - **Discontinuous**. ### Step 4: Count the points of discontinuity From the analysis, we found that \( f(x) \) is discontinuous at: - \( x = -3 \) - \( x = -2 \) - \( x = 2 \) Thus, the total number of points at which \( f(x) \) is discontinuous in the interval \((-3, 3)\) is **3**. ### Final Answer The number of points at which \( f(x) \) is discontinuous in \((-3, 3)\) is **3**.

To determine the number of points at which the function \( f(x) \) is discontinuous in the interval \((-3, 3)\), we will analyze the function piece by piece. The function is defined as follows: \[ f(x) = \begin{cases} 0 & \text{for } 0 \leq x < 3 \\ |[x] + 1| & \text{for } -3 < x < 0 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then

If f(x)= {(|1-4x^2|,; 0 lt= x lt 1), ([x^2-2x],; 1 lt= x lt 2):} , where [.] denotes the greatest integer function, then f(x) is

If f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):} , where [x] denotes the greatest integer function, then

Let f (x) = x . [(x)/(2)] for - 10 lt x lt 10 , where [t] denotes the greatest integer function . Then the number of points of discontinuity of f is equal to _______.

Let f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[.] denotes the greatest integer function. Then

If [.] denotes the greatest integer function then the number of points where f(x)=[x]+[x+(1)/(3)]+[x+(2)/(3)] is Discontinuous for x in(0,3) are

Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ [cos x],,, 0 le x le pi),( [sin x] -[cos x],,, pi lt x le 2pi):} where {.} denotes greatest integer function then. Number of points where f (x) is non-derivable :

Let f(x)=[2x^(3)-5] I.denotes the greatest integer function.Then number of points in (1,2) where the function is discontinuous, is/are

Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]= greatest integer less than or equal to x, then: The number of values of x for x in [0,3] where f (x) is dicontnous is: