Home
Class 12
MATHS
x^2dy+(y-1/x)dx=0 at y(1)=1 then find th...

`x^2dy+(y-1/x)dx=0` at `y(1)=1` then find the value of `y(1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( x^2 dy + \left( y - \frac{1}{x} \right) dx = 0 \) with the initial condition \( y(1) = 1 \), we can follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the given equation into a more standard form. We can write: \[ x^2 \frac{dy}{dx} = -\left( y - \frac{1}{x} \right) \] This simplifies to: \[ \frac{dy}{dx} + \frac{y}{x^2} = \frac{1}{x^3} \] ### Step 2: Identifying \( p \) and \( q \) From the rearranged equation, we can identify: - \( p = \frac{1}{x^2} \) - \( q = \frac{1}{x^3} \) ### Step 3: Finding the Integrating Factor The integrating factor \( \mu(x) \) is given by: \[ \mu(x) = e^{\int p \, dx} = e^{\int \frac{1}{x^2} \, dx} \] Calculating the integral: \[ \int \frac{1}{x^2} \, dx = -\frac{1}{x} \] Thus, the integrating factor is: \[ \mu(x) = e^{-\frac{1}{x}} \] ### Step 4: Multiplying the Equation by the Integrating Factor We multiply the entire differential equation by the integrating factor: \[ e^{-\frac{1}{x}} \frac{dy}{dx} + e^{-\frac{1}{x}} \frac{y}{x^2} = e^{-\frac{1}{x}} \frac{1}{x^3} \] ### Step 5: Recognizing the Left Side as a Derivative The left side can be recognized as the derivative of a product: \[ \frac{d}{dx} \left( y e^{-\frac{1}{x}} \right) = e^{-\frac{1}{x}} \frac{1}{x^3} \] ### Step 6: Integrating Both Sides Integrate both sides: \[ \int \frac{d}{dx} \left( y e^{-\frac{1}{x}} \right) dx = \int e^{-\frac{1}{x}} \frac{1}{x^3} \, dx \] The left side simplifies to: \[ y e^{-\frac{1}{x}} = \int e^{-\frac{1}{x}} \frac{1}{x^3} \, dx + C \] ### Step 7: Solving the Integral on the Right Side To solve the integral on the right side, we can use integration by parts or look it up. We find: \[ \int e^{-\frac{1}{x}} \frac{1}{x^3} \, dx = -e^{-\frac{1}{x}} \left( \frac{1}{x^2} + C \right) \] ### Step 8: Applying the Initial Condition Now we apply the initial condition \( y(1) = 1 \): \[ 1 \cdot e^{-1} = -e^{-1} \left( \frac{1}{1^2} \right) + C \] Solving for \( C \): \[ e^{-1} = -e^{-1} + C \implies C = 2e^{-1} \] ### Step 9: Final Solution Substituting back, we have: \[ y e^{-\frac{1}{x}} = -e^{-\frac{1}{x}} \left( \frac{1}{x^2} \right) + 2e^{-1} \] Multiplying through by \( e^{\frac{1}{x}} \): \[ y = -\frac{1}{x^2} + 2e^{\frac{1}{x} - 1} \] ### Step 10: Finding \( y(1/2) \) Now we substitute \( x = \frac{1}{2} \): \[ y\left(\frac{1}{2}\right) = -\frac{1}{\left(\frac{1}{2}\right)^2} + 2e^{\frac{1}{\frac{1}{2}} - 1} = -4 + 2e^{2 - 1} = -4 + 2e \] Thus, the final value is: \[ y\left(\frac{1}{2}\right) = 2e - 4 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

If 2x^2dy + (e^y-2x)dx=0 and y(e)=1 then find the value of y(1)

If y(x) is a solutioin of the different equation ((2+s in x)/(1+y))(dy)/(dx)=-cos x and y(0)=1 then find the value of y(pi/2)

If y(x) is a solution of the differential equation ((2+sin x)/(1+y))(dy)/(dx)=-cos x and y(0)=1, then find the value of y((pi)/(2))

If (2xy-y^(2)-y)dx = (2xy+x-x^(2))dy and y(1)=1 ,then the value of y(-1) is

If K is constant such that xy + k = e ^(((x-1)^2)/(2)) satisfies the differential equation x . ( dy )/( dx) = (( x^2 - x-1) y+ (x-1) and y (1) =0 then find the value of K .

If y satisfies (dy)/(dx)=(e^(y))/(x^(2))-(1)/(x) and y(1)=0 then the value of e^(y(2)) is

If y(x) is a solution of (dy)/(dx)-(xy)/(1+x)=(1)/(1+x) and y(0)=-1 , then the value of y(2) is

Let y = y(x) be the solution of the differential equation e^(x)sqrt(1-y^(2))dx+((y)/(x))dy=0,y(1)=-1 . Then the value of (y(3))^(2) is equal to :