Home
Class 12
MATHS
The value of lim (x to pi/4) (pi/4 int2^...

The value of `lim _(x to pi/4) (pi/4 int_2^(sec^2x)f(x)dx)/(x^2-pi^2/16)` is

A

`2f(2)`

B

`sqrt2 f(2)`

C

`4f(2)`

D

`f(sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \frac{\pi}{4}} \frac{\frac{\pi}{4} \int_{2}^{\sec^2 x} f(t) \, dt}{x^2 - \frac{\pi^2}{16}}, \] we first need to analyze the expression as \( x \) approaches \( \frac{\pi}{4} \). ### Step 1: Evaluate the limit's form As \( x \to \frac{\pi}{4} \), we have: - \( \sec^2\left(\frac{\pi}{4}\right) = 2 \) - Therefore, \( \int_{2}^{\sec^2 x} f(t) \, dt \) approaches \( \int_{2}^{2} f(t) \, dt = 0 \). - The denominator \( x^2 - \frac{\pi^2}{16} \) also approaches \( \left(\frac{\pi}{4}\right)^2 - \frac{\pi^2}{16} = 0 \). Thus, we have a \( \frac{0}{0} \) indeterminate form, which allows us to apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: 1. **Differentiate the numerator:** The numerator is \( \frac{\pi}{4} \int_{2}^{\sec^2 x} f(t) \, dt \). We apply the Fundamental Theorem of Calculus and the chain rule: \[ \frac{d}{dx}\left(\frac{\pi}{4} \int_{2}^{\sec^2 x} f(t) \, dt\right) = \frac{\pi}{4} f(\sec^2 x) \cdot \frac{d}{dx}(\sec^2 x). \] The derivative of \( \sec^2 x \) is \( 2 \sec^2 x \tan x \). Thus, we have: \[ \frac{d}{dx}\left(\frac{\pi}{4} \int_{2}^{\sec^2 x} f(t) \, dt\right) = \frac{\pi}{4} f(\sec^2 x) \cdot (2 \sec^2 x \tan x). \] 2. **Differentiate the denominator:** The denominator \( x^2 - \frac{\pi^2}{16} \) differentiates to \( 2x \). ### Step 3: Rewrite the limit Now we rewrite the limit using the derivatives: \[ \lim_{x \to \frac{\pi}{4}} \frac{\frac{\pi}{4} f(\sec^2 x) \cdot (2 \sec^2 x \tan x)}{2x}. \] ### Step 4: Substitute \( x = \frac{\pi}{4} \) Now we substitute \( x = \frac{\pi}{4} \): - \( \sec^2\left(\frac{\pi}{4}\right) = 2 \) - \( \tan\left(\frac{\pi}{4}\right) = 1 \) - \( 2x = 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} \) Thus, we have: \[ \lim_{x \to \frac{\pi}{4}} \frac{\frac{\pi}{4} f(2) \cdot (2 \cdot 2 \cdot 1)}{\frac{\pi}{2}} = \frac{\frac{\pi}{4} \cdot 4 f(2)}{\frac{\pi}{2}}. \] ### Step 5: Simplify the expression This simplifies to: \[ \frac{\pi f(2)}{2} \cdot \frac{2}{\pi} = 2 f(2). \] ### Final Answer Thus, the value of the limit is: \[ \boxed{2 f(2)}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

Let f: R to R be a continuous function. Then lim_(x to pi//4) (pi/4 int_2^(sec^2x) f(x)dx)/(x^2 - pi^2/16) is equal to :

Let f: R to R be a continuous function. Then lim_(x to pi//4) (pi/4 int_2^(sec^2x) f(x)dx)/(x^2 - pi^2/16) is equal to :

The value of lim _( x to (pi)/(4))(int_(2 ) ^(cosec ^(2)x)tg (t )dt)/(x ^(2)-(pi^(2))/(16)) is:

The value of lim_(x to (pi)/4) (sin 2x )^(sec^2x) is equal to

lim_(x rarr(pi)/(4))(int_(2)^(sec^(2)x)f(t)dt)/(x^(2)-(pi^(2))/(16)) equals:

The value of int_(pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

lim_(x rarr(pi)/(4))(int_(2)^(sec^(2)x)f(t)dt)/(x^(2)-(pi^(2))/(16)) equal :

Find the value of int_(pi/4)^(pi/3) (sin2x)/(1-cos2x) dx