Home
Class 12
MATHS
Find the rang of f(x)=logsqrt5(3+cos((3p...

Find the rang of `f(x)=log_sqrt5(3+cos((3pi)/4+x)+cos((pi)/4+x)+cos((pi)/4-x)-cos((3pi)/4-x))`

A

`(0,sqrt5)`

B

`[1/sqrt5,sqrt5]`

C

`[-2,2]`

D

`[0,2]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \[ f(x) = \log_{\sqrt{5}} \left( 3 + \cos\left(\frac{3\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} - x\right) - \cos\left(\frac{3\pi}{4} - x\right) \right), \] we will simplify the expression inside the logarithm step by step. ### Step 1: Simplify the cosine terms We start by rewriting the function: \[ f(x) = \log_{\sqrt{5}} \left( 3 + \cos\left(\frac{3\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} - x\right) - \cos\left(\frac{3\pi}{4} - x\right) \right). \] Using the cosine addition and subtraction formulas: 1. \(\cos(a + b) = \cos a \cos b - \sin a \sin b\) 2. \(\cos(a - b) = \cos a \cos b + \sin a \sin b\) We can group the terms appropriately. ### Step 2: Grouping and using identities Now we can group the terms: \[ \cos\left(\frac{3\pi}{4} + x\right) - \cos\left(\frac{3\pi}{4} - x\right) + \cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} - x\right). \] Using the cosine subtraction formula: \[ \cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right), \] we can simplify \(\cos\left(\frac{3\pi}{4} + x\right) - \cos\left(\frac{3\pi}{4} - x\right)\) to: \[ -2 \sin\left(\frac{3\pi/4 + 3\pi/4}{2}\right) \sin\left(\frac{2x}{2}\right) = -2 \sin\left(\frac{3\pi}{4}\right) \sin(x) = -2 \cdot \frac{1}{\sqrt{2}} \sin(x) = -\sqrt{2} \sin(x). \] For the other two cosine terms, we can use the cosine addition formula: \[ \cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} - x\right) = 2 \cos\left(\frac{\pi/4 + \pi/4}{2}\right) \cos\left(\frac{2x}{2}\right) = 2 \cos\left(\frac{\pi}{4}\right) \cos(x) = \sqrt{2} \cos(x). \] ### Step 3: Combine the results Now we can substitute back into our function: \[ f(x) = \log_{\sqrt{5}} \left( 3 - \sqrt{2} \sin(x) + \sqrt{2} \cos(x) \right). \] ### Step 4: Express in a single trigonometric function We can rewrite \(-\sqrt{2} \sin(x) + \sqrt{2} \cos(x)\) as: \[ \sqrt{2} \left( \cos(x) - \sin(x) \right). \] The expression \(\cos(x) - \sin(x)\) can be rewritten as: \[ \sqrt{2} \cos\left(x + \frac{\pi}{4}\right). \] Thus, we have: \[ f(x) = \log_{\sqrt{5}} \left( 3 + 2 \cos\left(x + \frac{\pi}{4}\right) \right). \] ### Step 5: Determine the range of the cosine function The term \(2 \cos\left(x + \frac{\pi}{4}\right)\) varies from \(-2\) to \(2\). Therefore, the expression \(3 + 2 \cos\left(x + \frac{\pi}{4}\right)\) varies from \(3 - 2 = 1\) to \(3 + 2 = 5\). ### Step 6: Find the range of the logarithm Now we can find the range of \(f(x)\): \[ f(x) = \log_{\sqrt{5}}(y) \quad \text{where } y \in [1, 5]. \] Calculating the logarithm: - When \(y = 1\), \(f(x) = \log_{\sqrt{5}}(1) = 0\). - When \(y = 5\), \(f(x) = \log_{\sqrt{5}}(5) = 2\). ### Conclusion Thus, the range of \(f(x)\) is: \[ \boxed{[0, 2]}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

The range of the function f(x) = log_(sqrt5)(3 + cos ((3pi)/4 + x) + cos ((pi)/4 + x) + cos ((pi)/4 - x) - cos ((3pi)/4 - x)) is :

The range of the function f(x) = log_(sqrt5)(3 + cos ((3pi)/4 + x) + cos ((pi)/4 + x) + cos ((pi)/4 - x) - cos ((3pi)/4 - x)) is :

cos((3pi)/4+x)-sin(pi/4-x)=?

Prove the following: (i) cos((3pi)/(4)+x)-cos((3pi)/(4)-x)=-sqrt2 sin x (ii) cos"((pi)/(4)+x)+cos((pi)/(4)-x)=sqrt2 cos x .

Prove that: cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx

The value of int_(0)^((pi)/(4))ln cos((pi)/(4)+x)^(cot((pi)/(4)-x))dx is

Prove that: cos((pi)/(4)+x)+cos((pi)/(4)-x)=sqrt(2)cos x