Home
Class 14
MATHS
If sin x = (4)/(5) , then cosec x + cot ...

If `sin x = (4)/(5) `, then cosec x + cot x =

A

`31//12`

B

`35//12`

C

2

D

`1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin x = \frac{4}{5} \) and we need to find \( \csc x + \cot x \), we can follow these steps: ### Step 1: Understand the relationship of sine, cosecant, and cotangent We know that: - \( \csc x = \frac{1}{\sin x} \) - \( \cot x = \frac{\cos x}{\sin x} \) ### Step 2: Calculate cosecant Given \( \sin x = \frac{4}{5} \): \[ \csc x = \frac{1}{\sin x} = \frac{1}{\frac{4}{5}} = \frac{5}{4} \] ### Step 3: Find the value of cosine using the Pythagorean theorem Since \( \sin x = \frac{4}{5} \), we can find \( \cos x \) using the identity: \[ \sin^2 x + \cos^2 x = 1 \] Substituting the value of \( \sin x \): \[ \left(\frac{4}{5}\right)^2 + \cos^2 x = 1 \] \[ \frac{16}{25} + \cos^2 x = 1 \] \[ \cos^2 x = 1 - \frac{16}{25} = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} \] Taking the square root: \[ \cos x = \frac{3}{5} \] ### Step 4: Calculate cotangent Now we can find \( \cot x \): \[ \cot x = \frac{\cos x}{\sin x} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] ### Step 5: Add cosecant and cotangent Now we can find \( \csc x + \cot x \): \[ \csc x + \cot x = \frac{5}{4} + \frac{3}{4} = \frac{5 + 3}{4} = \frac{8}{4} = 2 \] ### Final Answer Thus, \( \csc x + \cot x = 2 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If Cot x = (5)/(12) then sec x + cosec x = ?

int cosec^2 x dx=- cot x

csc x=1+cot x

int cosec x (cot x-1) e^x dx

If cosx=(1)/(3) , then what is sin x. cot x. cosec x. tanx equal to ?

(d)/(dx) (cosec x+ cot x )=

" cosec 2x + cot 2x = cot x "

log("cosec x"-cot x)