Home
Class 14
MATHS
Find the value of 'x' in x:(3)/(7)::(7)/...

Find the value of 'x' in `x:(3)/(7)::(7)/(9):(5)/(9)`

A

`(4)/(7)`

B

`(3)/(2)`

C

`(3)/(5)`

D

`(9)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( x : \frac{3}{7} :: \frac{7}{9} : \frac{5}{9} \), we can set up a proportion based on the given ratios. ### Step-by-Step Solution: 1. **Set Up the Proportion:** The given proportion can be written as: \[ \frac{x}{\frac{3}{7}} = \frac{\frac{7}{9}}{\frac{5}{9}} \] 2. **Simplify the Right Side:** To simplify the right side, we can divide \(\frac{7}{9}\) by \(\frac{5}{9}\): \[ \frac{\frac{7}{9}}{\frac{5}{9}} = \frac{7}{9} \times \frac{9}{5} = \frac{7}{5} \] 3. **Rewrite the Equation:** Now we can rewrite our equation as: \[ \frac{x}{\frac{3}{7}} = \frac{7}{5} \] 4. **Cross-Multiply:** Cross-multiplying gives us: \[ x \cdot 5 = \frac{3}{7} \cdot 7 \] Simplifying the right side: \[ x \cdot 5 = 3 \] 5. **Solve for x:** Now, divide both sides by 5: \[ x = \frac{3}{5} \] ### Final Answer: The value of \( x \) is \( \frac{3}{5} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 7/9 - 1/3

Find the value of -3/7+9/7

Find the value of 9 - | - 7 |

"Find the value of "(4)/(9)-:((-5)/(7))

If the cofficients of x^(2) and x^(3) in the expansion 0(3+ax)^(9) are the same,then the value of a is -(7)/(9) b.-(9)/(7) c.(7)/(9) d.(9)/(7)

If 5(tan^(2)x-cos^(2)x)=2cos2x+9, then the value of cos4x is: (2)/(9)(2)-(7)/(9)(3)-(3)/(5)(4)(1)/(3)

Find the value of x so that ((3)/(4))^(-9)times((3)/(4))^(-7)=((3)/(4))^(4x)

Find the value of 1"" (7)/(9) + (5)/(12) + (7)/(18)

Find the value of : ((3.9)^2-(1.7)^2)/(3.9-1.7)

Find the value of x for which ((4)/(9)) ^(4) xx ((4)/(9)) ^(-7) = ((4)/(9)) ^(2x -1)