Home
Class 14
MATHS
Simplify : (2.25)^((1)/(2))...

Simplify : `(2.25)^((1)/(2))`

A

`1.5`

B

15

C

1.6

D

`2//3`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( (2.25)^{\frac{1}{2}} \), we can follow these steps: ### Step 1: Convert the decimal to a fraction We can express \( 2.25 \) as a fraction. Since there are two decimal places, we can write: \[ 2.25 = \frac{225}{100} \] ### Step 2: Simplify the fraction Next, we simplify \( \frac{225}{100} \): \[ \frac{225}{100} = \frac{225 \div 25}{100 \div 25} = \frac{9}{4} \] ### Step 3: Rewrite the expression Now we can rewrite the original expression using the simplified fraction: \[ (2.25)^{\frac{1}{2}} = \left(\frac{9}{4}\right)^{\frac{1}{2}} \] ### Step 4: Apply the power of a fraction Using the property of exponents, we can separate the numerator and denominator: \[ \left(\frac{9}{4}\right)^{\frac{1}{2}} = \frac{9^{\frac{1}{2}}}{4^{\frac{1}{2}}} \] ### Step 5: Calculate the square roots Now we calculate the square roots: \[ 9^{\frac{1}{2}} = 3 \quad \text{and} \quad 4^{\frac{1}{2}} = 2 \] ### Step 6: Combine the results Now we can combine the results: \[ \frac{9^{\frac{1}{2}}}{4^{\frac{1}{2}}} = \frac{3}{2} \] ### Step 7: Convert to decimal Finally, we can convert \( \frac{3}{2} \) to decimal form: \[ \frac{3}{2} = 1.5 \] Thus, the simplified value of \( (2.25)^{\frac{1}{2}} \) is \( 1.5 \). ### Final Answer: \[ 1.5 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))xx(81)^((1)/(4)))

Simplify [{(256)^(-(1)/(2))}^(-(1)/(4))]^(2)

Simplify : ((25)/(9))^(-(3)/(2))xx((2)/(5))^(-3)

Simplify: ((6.25)^(1/2) xx (0.0144)^(1/2)+ 1)/((0.027)^(1/3)xx (81)^(1/4))

Simplify : ((1)/(2)x(1)/(4))+((1)/(2)x6)

Simplify: 7(1)/(2)+3(1)/(3)

Simplify : (1/4)^(-2)+\ (1/2)^(-2)+(1/3)^(-2)

Simplify: (7)^(2)-: (7^((1)/(2)))^(4)