Home
Class 14
MATHS
If Cot x = (5)/(12), then Sin x + (1)/("...

If Cot `x = (5)/(12)`, then Sin x `+ (1)/("Cot x") + Sec x = ?`

A

173/13

B

77/13

C

75/13

D

17/13

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \sin x + \frac{1}{\cot x} + \sec x \) given that \( \cot x = \frac{5}{12} \). ### Step-by-Step Solution: 1. **Understand the Given Information:** We know that \( \cot x = \frac{5}{12} \). This means that in a right triangle, the adjacent side (base) is 5 and the opposite side (perpendicular) is 12. 2. **Calculate the Hypotenuse:** Using the Pythagorean theorem, we can find the hypotenuse \( h \): \[ h = \sqrt{(\text{adjacent})^2 + (\text{opposite})^2} = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \] 3. **Find \( \sin x \):** The sine of angle \( x \) is given by the ratio of the opposite side to the hypotenuse: \[ \sin x = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{12}{13} \] 4. **Find \( \cot x \):** We already know \( \cot x = \frac{5}{12} \). Therefore, \( \frac{1}{\cot x} \) is: \[ \frac{1}{\cot x} = \frac{12}{5} \] 5. **Find \( \sec x \):** The secant of angle \( x \) is given by the ratio of the hypotenuse to the adjacent side: \[ \sec x = \frac{\text{hypotenuse}}{\text{adjacent}} = \frac{13}{5} \] 6. **Combine All Values:** Now we can substitute these values into the expression: \[ \sin x + \frac{1}{\cot x} + \sec x = \frac{12}{13} + \frac{12}{5} + \frac{13}{5} \] 7. **Finding a Common Denominator:** The common denominator for \( 13 \) and \( 5 \) is \( 65 \). We convert each term: \[ \frac{12}{13} = \frac{12 \times 5}{13 \times 5} = \frac{60}{65} \] \[ \frac{12}{5} = \frac{12 \times 13}{5 \times 13} = \frac{156}{65} \] \[ \frac{13}{5} = \frac{13 \times 13}{5 \times 13} = \frac{169}{65} \] 8. **Add the Values Together:** Now we can add the fractions: \[ \frac{60}{65} + \frac{156}{65} + \frac{169}{65} = \frac{60 + 156 + 169}{65} = \frac{385}{65} \] 9. **Simplifying the Fraction:** Now we simplify \( \frac{385}{65} \): \[ \frac{385 \div 5}{65 \div 5} = \frac{77}{13} \] ### Final Answer: Thus, the value of \( \sin x + \frac{1}{\cot x} + \sec x \) is \( \frac{77}{13} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If Cot x = (5)/(12) then sec x + cosec x = ?

If sin x = 5/13 then cot x will be

(i) cot x (ii) sec x

sin 2x (tan x + cot x) = ?

If sin x = (3)/(5), 0 le x le 90^(@) , then the value of cot x.sec x is :

(sin 2x)/(1- cos 2x ) = cot x

If [ x cos ( cot^(-1) x ) + sin ( cot^(-1) x) ]^(2) = (51)/(50) then the positive value of x is