Home
Class 14
MATHS
If (1)/(43.21)=0.02314 then (1)/(0.00043...

If `(1)/(43.21)=0.02314` then `(1)/(0.0004321)=?`

A

23.14

B

2314

C

0.0002314

D

231.4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{0.0004321} \) using the information given that \( \frac{1}{43.21} = 0.02314 \). ### Step 1: Understand the relationship between the two fractions We know that \( 0.0004321 \) can be expressed in terms of \( 43.21 \). Specifically, we can rewrite \( 0.0004321 \) as: \[ 0.0004321 = \frac{4321}{10000000} \] ### Step 2: Find the reciprocal of \( 0.0004321 \) To find \( \frac{1}{0.0004321} \), we can use the reciprocal of the fraction we just formed: \[ \frac{1}{0.0004321} = \frac{10000000}{4321} \] ### Step 3: Relate \( \frac{10000000}{4321} \) to \( \frac{1}{43.21} \) Since we know \( \frac{1}{43.21} = 0.02314 \), we can express \( 4321 \) in terms of \( 43.21 \): \[ 4321 = 43.21 \times 100 \] Thus, we can rewrite \( \frac{10000000}{4321} \): \[ \frac{10000000}{4321} = \frac{10000000}{43.21 \times 100} = \frac{100000}{43.21} \] ### Step 4: Calculate \( \frac{100000}{43.21} \) Now, we can calculate \( \frac{100000}{43.21} \) using the value of \( \frac{1}{43.21} \): \[ \frac{100000}{43.21} = 100000 \times \frac{1}{43.21} = 100000 \times 0.02314 \] ### Step 5: Perform the multiplication Now we perform the multiplication: \[ 100000 \times 0.02314 = 2314 \] ### Final Answer Thus, the value of \( \frac{1}{0.0004321} \) is: \[ \frac{1}{0.0004321} = 2314 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If P= [(1,0),(1//2,1)] , then P^(50) is "

If A=[[1,0],[2,1]] then A^(3)=

If A=[(1,0),(1/2,1)] then A^50 is (A) [(1,25),(0,1)] (B) [(1,0),(25,1)] (C) [(1,0),(0,50)] (D) [(1,0),(50,1)]

If A^-1 = [(1,-1,0),(0,-2,1),(0,0,1)] then (A) A is non-singular (B) A is skew symmetric (C) |A|=2 (D) AdjA= [(1/2,- 1/2,0),(0,-1,1/2),(0,0,- 1/2)]

If A=[[0,3],[2,1]] , then find A^(2)

if A[{:(0,3),(2,1):}], then find A^(2)

If (0.2)/(x) + 0.1 ge 2.1 , then x le ______