`3.0xx0.3xx0.03xx0.003=?`
`3.0xx0.3xx0.03xx0.003=?`
A
`81xx10^(-4)`
B
`81xx10^(-7)`
C
`81xx10^(-5)`
D
`81xx10^(-6)`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the expression \(3.0 \times 0.3 \times 0.03 \times 0.003\), we will follow these steps:
### Step 1: Convert the decimal numbers into fractions
We can express each decimal number as a fraction:
- \(3.0 = \frac{3}{1}\)
- \(0.3 = \frac{3}{10}\)
- \(0.03 = \frac{3}{100}\)
- \(0.003 = \frac{3}{1000}\)
### Step 2: Write the expression as a product of fractions
Now, we can rewrite the expression:
\[
3.0 \times 0.3 \times 0.03 \times 0.003 = \frac{3}{1} \times \frac{3}{10} \times \frac{3}{100} \times \frac{3}{1000}
\]
### Step 3: Multiply the numerators and denominators
Multiply all the numerators together and all the denominators together:
\[
\text{Numerator: } 3 \times 3 \times 3 \times 3 = 3^4
\]
\[
\text{Denominator: } 1 \times 10 \times 100 \times 1000 = 10^{1+2+3} = 10^6
\]
### Step 4: Simplify the expression
Now we can simplify the expression:
\[
\frac{3^4}{10^6}
\]
### Step 5: Calculate \(3^4\)
Now we calculate \(3^4\):
\[
3^4 = 3 \times 3 \times 3 \times 3 = 9 \times 3 = 27 \times 3 = 81
\]
### Step 6: Write the final answer
Thus, we have:
\[
\frac{81}{10^6}
\]
This can also be written in decimal form as:
\[
0.000081
\]
### Conclusion
The final answer is:
\[
0.000081
\]
---
Similar Questions
Explore conceptually related problems
0.23xx0.3 = ?
3 xx 0.3 xx 0.03 xx 0.003 xx 30 = ?
What is 3xx0.3xx0.03xx0.003xx30 equal to ?
3xx0.3xx0.03xx0.003xx30=?0.0000243*0.000243(c)0.00243(d)0.0243
0.2xx0.003xx0.004xx0.005=
3xx0.3xx0.03xx0.003xx30=0.0000243 (b) 0.0002430.00243 (d) 0.0243
[[{:(0.5xx0.5xx0.5+0.2xx0.2xx0.2),(0.3xx0.3xx0.3-3xx0.5xx0.3xx0.2):}]]/{:(0.5xx0.5+0.2xx0.2+0.3xx0.3),(0.5xx0.2-0.2xx0.3-0.5xx0.3):}=?