Home
Class 14
MATHS
3.0xx0.3xx0.03xx0.003=?...

`3.0xx0.3xx0.03xx0.003=?`

A

`81xx10^(-4)`

B

`81xx10^(-7)`

C

`81xx10^(-5)`

D

`81xx10^(-6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(3.0 \times 0.3 \times 0.03 \times 0.003\), we will follow these steps: ### Step 1: Convert the decimal numbers into fractions We can express each decimal number as a fraction: - \(3.0 = \frac{3}{1}\) - \(0.3 = \frac{3}{10}\) - \(0.03 = \frac{3}{100}\) - \(0.003 = \frac{3}{1000}\) ### Step 2: Write the expression as a product of fractions Now, we can rewrite the expression: \[ 3.0 \times 0.3 \times 0.03 \times 0.003 = \frac{3}{1} \times \frac{3}{10} \times \frac{3}{100} \times \frac{3}{1000} \] ### Step 3: Multiply the numerators and denominators Multiply all the numerators together and all the denominators together: \[ \text{Numerator: } 3 \times 3 \times 3 \times 3 = 3^4 \] \[ \text{Denominator: } 1 \times 10 \times 100 \times 1000 = 10^{1+2+3} = 10^6 \] ### Step 4: Simplify the expression Now we can simplify the expression: \[ \frac{3^4}{10^6} \] ### Step 5: Calculate \(3^4\) Now we calculate \(3^4\): \[ 3^4 = 3 \times 3 \times 3 \times 3 = 9 \times 3 = 27 \times 3 = 81 \] ### Step 6: Write the final answer Thus, we have: \[ \frac{81}{10^6} \] This can also be written in decimal form as: \[ 0.000081 \] ### Conclusion The final answer is: \[ 0.000081 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

0.23xx0.3 = ?

3 xx 0.3 xx 0.03 xx 0.003 xx 30 = ?

What is 3xx0.3xx0.03xx0.003xx30 equal to ?

3xx0.3xx0.03xx0.003xx30=?0.0000243*0.000243(c)0.00243(d)0.0243

0.2xx0.003xx0.004xx0.005=

3xx0.3xx0.03xx0.003xx30=0.0000243 (b) 0.0002430.00243 (d) 0.0243

[[{:(0.5xx0.5xx0.5+0.2xx0.2xx0.2),(0.3xx0.3xx0.3-3xx0.5xx0.3xx0.2):}]]/{:(0.5xx0.5+0.2xx0.2+0.3xx0.3),(0.5xx0.2-0.2xx0.3-0.5xx0.3):}=?