Home
Class 14
MATHS
If costheta=(4)/(5),sectheta+tantheta=?...

If `costheta=(4)/(5),sectheta+tantheta=?`

A

2

B

1

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sec \theta + \tan \theta \) given that \( \cos \theta = \frac{4}{5} \). ### Step-by-Step Solution: 1. **Understanding the relationship**: We know that: \[ \sec \theta = \frac{1}{\cos \theta} \] and \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] 2. **Calculate \( \sec \theta \)**: Since \( \cos \theta = \frac{4}{5} \), we can find \( \sec \theta \): \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{4}{5}} = \frac{5}{4} \] 3. **Finding \( \sin \theta \)**: To find \( \tan \theta \), we first need \( \sin \theta \). We can use the Pythagorean theorem: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Plugging in \( \cos \theta \): \[ \sin^2 \theta + \left(\frac{4}{5}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{16}{25} = 1 \] \[ \sin^2 \theta = 1 - \frac{16}{25} = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} \] Taking the square root: \[ \sin \theta = \sqrt{\frac{9}{25}} = \frac{3}{5} \] 4. **Calculate \( \tan \theta \)**: Now we can find \( \tan \theta \): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] 5. **Combine \( \sec \theta \) and \( \tan \theta \)**: Now we can find \( \sec \theta + \tan \theta \): \[ \sec \theta + \tan \theta = \frac{5}{4} + \frac{3}{4} = \frac{5 + 3}{4} = \frac{8}{4} = 2 \] ### Final Answer: Thus, \( \sec \theta + \tan \theta = 2 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(2)sectheta+tantheta=1

If cosectheta, sectheta and cottheta " are in HP, then " (sintheta+tantheta)/(costheta) =______.

If (sectheta+tantheta)/(sectheta-tantheta)=(5)/(3) , then sintheta is equal to

If (sectheta+tantheta)/(sectheta-tantheta)=2(51)/(79) , then sintheta will be-

If costheta=(3)/(5) , then the value of sintheta.sectheta.tantheta is

If 4costheta-3sectheta=2tantheta , then theta is equal to

((1+tantheta+sectheta)(1+cottheta-cosectheta))/((sectheta+tantheta)(1-sintheta)) is equal to:

If costheta=(5)/(13) , then find the value of tantheta .

Find sintheta , if sectheta+tantheta=3

If sectheta=(13)/(5) ,then show that (tantheta)/(1+tan^(2)theta)=(sintheta)/(sectheta) .