Home
Class 14
MATHS
If Sinx=(4)/(5), then Secx+Tanx=?...

If `Sinx=(4)/(5)`, then `Secx+Tanx=?`

A

`37//20`

B

`31//12`

C

3

D

`1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin x = \frac{4}{5} \) and we need to find \( \sec x + \tan x \), we can follow these steps: ### Step-by-Step Solution 1. **Understanding the Given Information**: We know that \( \sin x = \frac{4}{5} \). This means that in a right triangle, the length of the opposite side (perpendicular) to angle \( x \) is 4, and the length of the hypotenuse is 5. 2. **Finding the Length of the Base**: We can use the Pythagorean theorem to find the length of the adjacent side (base). The Pythagorean theorem states: \[ h^2 = p^2 + b^2 \] where \( h \) is the hypotenuse, \( p \) is the opposite side, and \( b \) is the adjacent side. Plugging in the values: \[ 5^2 = 4^2 + b^2 \] This simplifies to: \[ 25 = 16 + b^2 \] Therefore: \[ b^2 = 25 - 16 = 9 \] Taking the square root gives us: \[ b = 3 \] 3. **Calculating \( \sec x \) and \( \tan x \)**: - The secant function is defined as: \[ \sec x = \frac{h}{b} = \frac{5}{3} \] - The tangent function is defined as: \[ \tan x = \frac{p}{b} = \frac{4}{3} \] 4. **Finding \( \sec x + \tan x \)**: Now we can add \( \sec x \) and \( \tan x \): \[ \sec x + \tan x = \frac{5}{3} + \frac{4}{3} = \frac{5 + 4}{3} = \frac{9}{3} = 3 \] ### Final Answer Thus, \( \sec x + \tan x = 3 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If 5sin x =4 , then the numberical value of ((tanx-cotx)/(secx-tanx))((cos^(4)x-sin^(4)x)/(2cos^(2)x-1)) ?

If tanx+secx=2cot(90^(@)+x) , then cosecx=?

int(1)/(a secx+b tanx)dx=

If secx+tanx=a , then find the value of sinx .

If y=|tanx-|sinx|| , then the value of (dy)/(dx) at x=(5pi)/(4) is

(d)/(dx)[tan^(-1)[(secx-tanx)]=

Derivative of y=sqrt((1-sinx)/(1+sinx)) is a)secx b)secx(tanx-Secx) c)tanx d)-tanx

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.

Solution of the differential equation cosxdy=y(sinx-y)dx, 0 lt x lt pi/2 is (A) tanx=(secx+c)y (B) secx=(tanx+c)y (C) ysecx=tanx+c (D) ytanx=secx+c