Home
Class 14
MATHS
If "cosec"^(4) theta-"cosec"^(2) theta=1...

If `"cosec"^(4) theta-"cosec"^(2) theta=1.24," then cot"^(4) theta+cot^2 theta=?`

A

1.24

B

1.86

C

2.48

D

0.62

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the question, we start with the expression: \[ \csc^4 \theta - \csc^2 \theta = 1.24 \] ### Step 1: Rewrite the equation in terms of cotangent. We know that: \[ \csc^2 \theta = 1 + \cot^2 \theta \] Substituting this into the equation gives: \[ \csc^4 \theta = (\csc^2 \theta)^2 = (1 + \cot^2 \theta)^2 \] ### Step 2: Expand the squared term. Now, we can expand \((1 + \cot^2 \theta)^2\): \[ (1 + \cot^2 \theta)^2 = 1 + 2\cot^2 \theta + \cot^4 \theta \] ### Step 3: Substitute back into the equation. Now we substitute this back into our original equation: \[ 1 + 2\cot^2 \theta + \cot^4 \theta - (1 + \cot^2 \theta) = 1.24 \] ### Step 4: Simplify the equation. This simplifies to: \[ 1 + 2\cot^2 \theta + \cot^4 \theta - 1 - \cot^2 \theta = 1.24 \] Which further simplifies to: \[ \cot^4 \theta + \cot^2 \theta = 1.24 \] ### Step 5: Final expression. Thus, we find that: \[ \cot^4 \theta + \cot^2 \theta = 1.24 \] ### Conclusion The value of \(\cot^4 \theta + \cot^2 \theta\) is: \[ \boxed{1.24} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cot^4 theta+ cot^2 theta=3 then cosec^4 theta- cosec^2 theta = ?

cosec^(2)theta-cot^(2)theta-1

cosec^2 theta - cot^2 theta = 1 +…..

Solve cosec^(2)theta-cot^(2) theta=cos theta .

cosec^(2)theta=1+cot^(2)theta

cosec^(6)theta-cot^(6)theta-3cot^(2)theta.cosec^(2)theta=?

csc^(6)theta-cot^(6)theta=1+3csc^(2)theta cot^(2)theta

cosec^4 theta-cot^4 theta=cosec^2theta+cot^2 theta

cosec^(4)theta+cot^(2)theta+cosec^(2)theta)"=