Home
Class 14
MATHS
If 3 cos^(2) x - 2 sin^(2) x = - 0.75 a...

If `3 cos^(2) x - 2 sin^(2) x = - 0.75` and `0^(@) le x le 90^(@)` , then x =

A

`60^(@)`

B

`45^(@)`

C

`30^(@)`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 \cos^2 x - 2 \sin^2 x = -0.75\) for \(0^\circ \leq x \leq 90^\circ\), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 3 \cos^2 x - 2 \sin^2 x = -0.75 \] To make calculations easier, we can rearrange it: \[ 3 \cos^2 x - 2 \sin^2 x + 0.75 = 0 \] ### Step 2: Use the Pythagorean identity We know from the Pythagorean identity that: \[ \cos^2 x + \sin^2 x = 1 \] We can express \(\cos^2 x\) in terms of \(\sin^2 x\): \[ \cos^2 x = 1 - \sin^2 x \] ### Step 3: Substitute \(\cos^2 x\) in the equation Substituting \(\cos^2 x\) into the equation gives: \[ 3(1 - \sin^2 x) - 2 \sin^2 x + 0.75 = 0 \] Expanding this: \[ 3 - 3 \sin^2 x - 2 \sin^2 x + 0.75 = 0 \] Combining like terms: \[ 3 - 5 \sin^2 x + 0.75 = 0 \] This simplifies to: \[ 3.75 - 5 \sin^2 x = 0 \] ### Step 4: Isolate \(\sin^2 x\) Rearranging gives: \[ 5 \sin^2 x = 3.75 \] Dividing both sides by 5: \[ \sin^2 x = \frac{3.75}{5} = 0.75 \] ### Step 5: Solve for \(\sin x\) Taking the square root of both sides: \[ \sin x = \sqrt{0.75} = \frac{\sqrt{3}}{2} \] ### Step 6: Find the angle \(x\) Now, we need to find \(x\) such that: \[ \sin x = \frac{\sqrt{3}}{2} \] In the range \(0^\circ \leq x \leq 90^\circ\), this occurs at: \[ x = 60^\circ \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{60^\circ} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2cos^(2)x- sin^(2)x= -0.25 and 0^(@) le x lt 90^(@) , then x= ?

If 3sec^(2)x - 2tan^(2)x = 6 and 0^(@) le x le 90^(@) then x = ?

If 8 sec^(2)x- 7 tan^(2)x= 11 and 0^(@) le x le 90^(@) , then x= ?

If sin 2A =sin 3A and 0 le A le 90^(@), then A is equal to

If cos x- sin x ge 1 and 0 le x le 2pi , then find the solution set for x .

If : sin x +cos x = sin 2 x + cos 2 x , "where" 0 lt x le (pi)/(2), "then x":=

The number of solution of sin^(4)x-cos^(2) x sin x+2 sin^(2)x+sin x=0 in 0 le x le 3 pi is

If sin x = (3)/(5), 0 le x le 90^(@) , then the value of cot x.sec x is :

Solve 2 cos^(2) x+ sin x le 2 , where pi//2 le x le 3pi//2 .