Home
Class 14
MATHS
Solve : (sin theta)/(1+cos theta)+(1+cos...

Solve : `(sin theta)/(1+cos theta)+(1+cos theta)/(sin theta)=?`
A. `tan theta`
B. `cot theta`
C. `(2)/(sin theta)`
D. `(2)/(cos theta)`

A

A

B

D

C

B

D

C

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta}\), we can follow these steps: ### Step 1: Find a common denominator The common denominator for the two fractions is \((1 + \cos \theta) \sin \theta\). We can rewrite the expression as follows: \[ \frac{\sin^2 \theta + (1 + \cos \theta)^2}{(1 + \cos \theta) \sin \theta} \] ### Step 2: Expand the numerator Now, we expand the numerator: \[ (1 + \cos \theta)^2 = 1 + 2\cos \theta + \cos^2 \theta \] So, the numerator becomes: \[ \sin^2 \theta + 1 + 2\cos \theta + \cos^2 \theta \] ### Step 3: Use the Pythagorean identity Using the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\), we can simplify the numerator: \[ 1 + 1 + 2\cos \theta = 2 + 2\cos \theta \] ### Step 4: Substitute back into the expression Now we substitute this back into our expression: \[ \frac{2 + 2\cos \theta}{(1 + \cos \theta) \sin \theta} \] ### Step 5: Factor out the common term We can factor out a 2 from the numerator: \[ \frac{2(1 + \cos \theta)}{(1 + \cos \theta) \sin \theta} \] ### Step 6: Cancel the common terms We can cancel \((1 + \cos \theta)\) from the numerator and denominator (assuming \(1 + \cos \theta \neq 0\)): \[ \frac{2}{\sin \theta} \] ### Final Result Thus, the simplified expression is: \[ \frac{2}{\sin \theta} \] This corresponds to option C.
Promotional Banner

Similar Questions

Explore conceptually related problems

(1-sin theta)/(cos theta)-(cos theta)/(1+sin theta)=2tan theta

(sin theta)/(1-cos theta)=cos ec theta+cot theta

(sin 2 theta)/(sin theta)-(cos 2 theta)/(cos theta)= A) sec theta B) tan theta C)1 D)2

1- (sin ^ (2) theta) / (1 + cos theta) + (1 + cos theta) / (sin theta) - (sin theta) / (1-cos theta) - (1) / (sec theta)

((sin theta+cos theta)^(2)-1)/(sin theta*cos theta)

(sin theta+sin2 theta)/(1+cos theta+cos2 theta)=tan theta

(sin theta+sin2 theta)/(1+cos theta+cos2 theta)=tan theta

(1 + cos theta + sin theta) / (1 + cos theta-sin theta) = (1 + sin theta) / (cos theta)

Prove (cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)

(cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)