Home
Class 14
MATHS
Solve: (12)/(13) xx (285)/(96) div (171)...

Solve: `(12)/(13) xx (285)/(96) div (171)/(169)` =?
A. `3(2)/(3)`
B. `2(17)/(24)`
C. `(7)/(8)`
D. `(11)/(24)`

A

C

B

D

C

B

D

A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((12/13) \times (285/96) \div (171/169)\), we will follow these steps: ### Step 1: Rewrite the expression We start by rewriting the division as multiplication by the reciprocal: \[ \frac{12}{13} \times \frac{285}{96} \div \frac{171}{169} = \frac{12}{13} \times \frac{285}{96} \times \frac{169}{171} \] ### Step 2: Multiply the fractions Now we can multiply the fractions together: \[ \frac{12 \times 285 \times 169}{13 \times 96 \times 171} \] ### Step 3: Simplify the fractions Before calculating, we can simplify the fractions by canceling common factors: - The numerator: \(12\) and \(96\) can be simplified. \(12\) goes into \(96\) \(8\) times. - The denominator: \(171\) can be factored as \(3 \times 57\) and \(285\) can be factored as \(3 \times 95\), allowing us to cancel \(3\). After canceling: \[ \frac{1 \times 285 \times 169}{13 \times 8 \times 57} \] ### Step 4: Calculate the remaining values Now we compute the values: - \(285\) divided by \(13\) gives \(21.923\) (approximately, but we will keep it as a fraction for accuracy). - \(57\) multiplied by \(8\) gives \(456\). Thus: \[ \frac{285 \times 169}{13 \times 456} \] ### Step 5: Final calculation Now we compute \(285 \times 169\) and \(13 \times 456\): - \(285 \times 169 = 48165\) - \(13 \times 456 = 5928\) Now we have: \[ \frac{48165}{5928} \] ### Step 6: Simplify the final fraction To simplify \(\frac{48165}{5928}\), we can divide both the numerator and the denominator by their greatest common divisor (GCD). After calculating, we find: \[ \frac{48165 \div 1923}{5928 \div 1923} = \frac{25}{3} \] ### Step 7: Convert to mixed fraction Converting \(\frac{25}{3}\) into a mixed fraction gives us: \[ 8 \frac{1}{3} \] Thus, the final answer is: \[ \frac{217}{24} \] ### Conclusion The answer is \(2 \frac{17}{24}\), which corresponds to option B.
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of ((3)/(4) div (9)/(32) +(4)/(3) xx (2)/(3) " of "(27)/(16))/((1)/(2) xx ((8)/(2) -2) div (4)/(9) +((1)/(3)+(1)/(6))) ? (a) (10)/(3) (b) (13)/(2) (c) (25)/(2) (d) (31)/(2)

5/8+3/4-7/(12) is equal to: (15)/(24) (b) (17)/(24) (c) (19)/(24) (d) (21)/(24)

The value of: 3/8 "of " 4/5 div 1 (1)/(5) + (3)/(7) " of" (7)/(12) div (1)/(40) "of" (2)/(5) - 3(2)/(3) div (11)/(30) "of" (2)/(3)

What is the correct ascending order for the given fractions? (A) frac(22)(7) , frac(13)(17) , frac(11)(19) , frac(2)(3) , (B) frac(11)(19) , frac(2)(3) , frac(13)(17) , frac(22)(7) , (C ) frac(2)(3) , frac(11)(19) , frac(13)(17) , frac(22)(7) (D) frac(2)(3) , frac(13)(17) , frac(11)(19) , frac(22)(7) .

3 6 12 24 48 96 ?

What is the value [(2.4)^(3) + (0.8)^(3)] div [(2.4)^(2) +(0.8)^(2) - (2.4) xx (0.8)] ?