Home
Class 14
MATHS
Find sin (90^(@)- theta) A. cos 90^(@)...

Find `sin (90^(@)- theta)`
A. `cos 90^(@)`
B. `1//2`
C. 1
D. `cos theta`

A

B

B

C

C

A

D

D

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( \sin(90^\circ - \theta) \), we can use the sine subtraction identity. Here’s the step-by-step solution: ### Step 1: Understand the Sine Identity We know from trigonometric identities that: \[ \sin(90^\circ - \theta) = \cos(\theta) \] This is a fundamental identity in trigonometry. ### Step 2: Apply the Identity Using the identity directly: \[ \sin(90^\circ - \theta) = \cos(\theta) \] ### Step 3: Verify the Options Now, let's compare this result with the provided options: - A. \( \cos(90^\circ) \) (which equals 0) - B. \( \frac{1}{2} \) - C. 1 - D. \( \cos(\theta) \) Since we found that \( \sin(90^\circ - \theta) = \cos(\theta) \), the correct answer is: \[ \text{Option D: } \cos(\theta) \] ### Final Answer Thus, the answer is \( \cos(\theta) \). ---
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find value of cos(90+theta)

(sin^(2) 20^(@) + sin^(2) 70^(@))/(cos^(2) 20^(@) + cos^(2) 70^(@)) + [ (sin (90^(@) - theta).sin theta)/(tan theta) + (cos (90^(@) - theta).cos theta)/(cot theta) ] .

Knowledge Check

  • Evaluate : sin theta cos theta - (sin theta cos (90^(@) - theta) cos theta)/( sec (90^(@) - theta)) - (cos theta sin (90^(@) - theta) sin theta)/( cosec (90^(@) - theta))

    A
    `-1`
    B
    2
    C
    0
    D
    1
  • The value of cos (270^(@) + theta) cos ( 90^(@) -theta) -sin (270^(@) - theta) cos theta is

    A
    0
    B
    `-1`
    C
    `1//2`
    D
    1
  • The value of sin^(2) (90^(@) - theta) [ 1 + cot ^(2) (90^(@) - theta)] is

    A
    `-1`
    B
    0
    C
    `(1)/(2)`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    Show that (1)/( 1 + cos (90^(@) - theta)) + (1)/(1 - cos (90^(@) - theta )) = 2 cosec ^(2) (90 ^(@) - theta )

    ((cos (90 ^ (@)) - theta) sin (90 ^ (@) - theta)) / (tan (90 ^ (@) - theta))

    sin theta cos(90^(@)-theta)+cos theta sin(90^(@)-theta)

    if 3 theta=90^(@) then find cos theta

    If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then the value of 2sin theta + cos theta is: