Home
Class 14
MATHS
Find (x+y)^(2) - (x-y)^(2) ? A. 2x^(2)...

Find `(x+y)^(2) - (x-y)^(2)` ?
A. `2x^(2)y^(2)`
B. `4xy`
C. `2x^(2)+2y^(2)`
D. `x^(2)-y^(2)+2xy`

A

C

B

D

C

A

D

B

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((x+y)^{2} - (x-y)^{2}\), we can use the algebraic identities for the squares of binomials. ### Step 1: Apply the binomial square formulas We know the following formulas: - \((x+y)^{2} = x^{2} + y^{2} + 2xy\) - \((x-y)^{2} = x^{2} + y^{2} - 2xy\) ### Step 2: Substitute the formulas into the expression Now, we can substitute these formulas into the expression: \[ (x+y)^{2} - (x-y)^{2} = (x^{2} + y^{2} + 2xy) - (x^{2} + y^{2} - 2xy) \] ### Step 3: Distribute the negative sign Next, we distribute the negative sign across the second part of the expression: \[ = x^{2} + y^{2} + 2xy - x^{2} - y^{2} + 2xy \] ### Step 4: Combine like terms Now, we can combine like terms: - The \(x^{2}\) terms: \(x^{2} - x^{2} = 0\) - The \(y^{2}\) terms: \(y^{2} - y^{2} = 0\) - The \(2xy\) terms: \(2xy + 2xy = 4xy\) Thus, we have: \[ = 0 + 0 + 4xy = 4xy \] ### Final Answer Therefore, the final answer is: \[ \boxed{4xy} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

x-x^(2)y+xy^(2)-y

Simplify : (x^(2) - y^(2) + 2xy + 1) - (x^(2) + y^(2) + 4xy - 5)

Add 2x^(2)+5xy-2y^(2), 3x^(2)-2xy+5y^(2) and 2x^(2)+8xy+3y^(2)

Add : 4x^(2)y, - 3xy^(2), -5xy^(2), 5x^(2)y

Add: 4x^(2) - 7xy + 4y^(2) - 3, 5 + 6y^(2) - 8xy + x^(2) and 6 - 2xy + 2x^(2) - 5y^(2)

Subtract: (i) 5a + 7b - 2c from 3a - 7b + 4c (ii) a - 2b - 3c from -2a + 5b - 4c (iii) 5x^(2) - 3xy + y^(2) from 7x^(2) - 2xy - 4y^(2) (iv) 6x^(3) - 7x^(2) + 5x - 3 from 4 - 5x + 6x^(2) - 8x^(3) (v) x^(3) + 2x^(2) y + 6xy^(2) - y^(3) from y^(3) - 3xy^(2) - 4x^(2) (vi) -11 x^(2) y^(2) + 7xy - 6 from 9x^(2) y^(2) - 6xy + 9 (vii) -2a + b + 6d from 5a - 2b - 3c

Which of the following expressions are exactly equal in value ? 1. ( 3x - y) ^(2) - ( 5x ^(2) - 2xy) 2. (2x - y ) ^(2) 3. (2x pm y ) ^(2) - 2 xy 4. (2x +3y ) ^(2) - 2 xy