Home
Class 14
MATHS
Solve: 1+ tan^(2) theta = ? <b> A. cos^(...

Solve: `1+ tan^(2) theta =` ? A. `cos^(2) theta`
B. `sec^(2) theta`
C. `tan^(2) theta`
D. 2

A

A

B

C

C

D

D

B

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 1 + \tan^2 \theta = ? \), we can use a fundamental trigonometric identity. ### Step-by-Step Solution: 1. **Recall the Trigonometric Identity**: The identity we will use is: \[ 1 + \tan^2 \theta = \sec^2 \theta \] 2. **Substituting the Identity**: From the identity, we can directly substitute: \[ 1 + \tan^2 \theta = \sec^2 \theta \] 3. **Conclusion**: Therefore, the solution to the equation \( 1 + \tan^2 \theta \) is: \[ \sec^2 \theta \] ### Final Answer: The correct option is **B. \( \sec^2 \theta \)**.
Promotional Banner

Similar Questions

Explore conceptually related problems

(sec^(2)theta-1)/(tan^(2)theta)=?

(1+tan^(2)theta)/(sec^(2)theta)=

(1-cos^2theta)sec^2 theta= tan^2 theta

sqrt((1-cos^(2)theta)sec^(2)theta)=tan theta

tan 2 theta * cot theta -1= A) 2 csc theta B) sec 2 theta C) 2 sec theta D) csc 2 theta

sec^(2)theta=1-tan2 theta

1+tan theta * tan 2 theta= A) 2 csc theta B) sec 2 theta C) 2 sec theta D) csc 2 theta

(1+sec 2 theta)*sqrt(sec^(2) theta-1)= A) 2 sec theta B) sec 2 theta C) 2 tan theta D) tan 2 theta

If : sec theta * tan theta (sectheta + tan theta) + (sec theta - tan theta) = sec^(n) theta + tan^(n) theta, "then" : n = A)1 B)2 C)3 D)4