Home
Class 14
MATHS
2^(2)-3^(2)+4^(3)-6^(2)=?...

`2^(2)-3^(2)+4^(3)-6^(2)=?`

A

A) 23

B

B) 32

C

C) 4

D

D) 21

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2^{2} - 3^{2} + 4^{3} - 6^{2}\), we will follow these steps: ### Step 1: Calculate each term individually - Calculate \(2^{2}\): \[ 2^{2} = 4 \] - Calculate \(3^{2}\): \[ 3^{2} = 9 \] - Calculate \(4^{3}\): \[ 4^{3} = 4 \times 4 \times 4 = 16 \times 4 = 64 \] - Calculate \(6^{2}\): \[ 6^{2} = 36 \] ### Step 2: Substitute the calculated values into the expression Now substitute the calculated values back into the expression: \[ 4 - 9 + 64 - 36 \] ### Step 3: Perform the operations from left to right - First, calculate \(4 - 9\): \[ 4 - 9 = -5 \] - Next, add \(64\) to \(-5\): \[ -5 + 64 = 59 \] - Finally, subtract \(36\) from \(59\): \[ 59 - 36 = 23 \] ### Final Answer The final result of the expression \(2^{2} - 3^{2} + 4^{3} - 6^{2}\) is: \[ \boxed{23} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |{:(1^(2),2^(2),3^(2),4^(2)),(2^(2),3^(2),4^(2),5^(2)),(3^(2),4^(2),5^(2),6^(2)),(4^(2),5^(2),6^(2),7^(2)):}| is

int(x+1)dy If y=6x^(2)(A)2x^(3)+6x^(2)+C(B)4x^(3)+6x^(2)+C(C)4x^(3)+4x^(2)+C(D)4x^(3)-6x^(2)+C

Length of the latus rectum of the conic 25((x-2)^(2)+(y-3)^(2))=(3x+4y-6)^(2) is

(2)/(3)+(4)/(6)=?

((2x^(4)-3x^(3)-3x^(2)+6x-2)/(x^(2)-2))

If n is a positive integer satisfying the equation 2+(6*2^(2)-4*2)+(6*3^(2)-4*3)+"......."+(6*n^(2)-4*n)=140 then the value of n is

(i) Simplify (2^(2/3)-2^((-2)/3))(2^(4/3)+1+2^((-4)/3)) (ii) [(root(6)(7))^(2)+(root(6)(7))^(-2)][(root(6)(7))^(4)-1+(root(6)(7))^(-4)]