Home
Class 14
MATHS
"cosec" (90^(@)- theta)=?...

`"cosec" (90^(@)- theta)=?`

A

` tan theta`

B

`cot theta`

C

`sec theta`

D

`cos theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \csc(90^\circ - \theta) \), we can use the co-function identity of trigonometric functions. Here’s a step-by-step solution: ### Step 1: Understand the Co-Function Identity The co-function identity states that: \[ \csc(90^\circ - \theta) = \sec(\theta) \] This means that the cosecant of an angle minus 90 degrees is equal to the secant of the angle. ### Step 2: Apply the Co-Function Identity Using the identity from Step 1, we can directly substitute: \[ \csc(90^\circ - \theta) = \sec(\theta) \] ### Step 3: Identify the Correct Option Now, let's look at the options provided: 1. \( 7 \) 2. \( 10\theta \) 3. \( \cot\theta \) 4. \( \sec\theta \) 5. \( \csc\theta \) From our calculation, we found that \( \csc(90^\circ - \theta) = \sec(\theta) \). Therefore, the correct answer is: \[ \sec\theta \] ### Final Answer Thus, the answer to the question \( \csc(90^\circ - \theta) \) is: \[ \sec\theta \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (i) sinthetacos(90^(@)-theta)+sin(90^(@)-theta)costheta=1 (ii) sectheta" cosec"(90^(@)-theta)-tanthetacot(90^(@)-theta)=1 (iii) (sintheta*sec(90^(@)-theta)cot(90^(@)-theta))/("cosec"(90^(@)-theta)*costheta*tantheta)-(tan(90^(@)-theta))/(cottheta)=0 (iv) (1+sin(90^(@)-theta))/(cos(90^(@)-0))+(cos(90^(@)-theta))/(1+sin(90^(@)-0))=2"cosec"theta

Write the value of "cosec"^(2)(90^(@)-theta)-tan^(2)theta.

Show that (1)/( 1 + cos (90^(@) - theta)) + (1)/(1 - cos (90^(@) - theta )) = 2 cosec ^(2) (90 ^(@) - theta )

Evaluate sin (50^(@) + theta) - cos (40^(@) - theta) + tan 1^(@) tan 15^(@) tan 20^(@) tan 70^(@) tan 65^(@) tan 89^(@) + sec (90^(@) - theta). cosec theta - tan (90^(@) - theta ) cot theta

Prove that: (tan(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)cot(360^(@)-theta)csc(90^(@)-theta))=1

Prove that :(sin theta cos(90^(0)-theta)cos theta)/(sin(90^(0)-theta))+(cos theta sin(90^(0)-theta)sin theta)/(cos(90^(@)-theta))=1csc^(2)(90^(@)-theta)-tan^(2)theta=cos^(2)(90^(@)-theta)+cos^(2)theta

Without using trigonometrical tables; prove (sin theta)/(sin(90-theta))+(cos theta)/(cos(90^(@)-theta))=sec theta*cosec theta

Prove that (cos(90^(@)-theta))/(1+sin(90^(@)-theta))+(1+sin(90^(@)-theta))/(cos(90^(@)-theta))=2cosec theta

What is the value of [tan^2 (90 - theta) - sin^2 (90 - theta)] cosec^2 (90 - theta) cot^2 (90 - theta) ?

The value of (cos(90^(0)-theta)sec(90^(@)-theta)tan theta)/(csc(90^(@)-theta)sin(90^(@)-theta)cot(90^(@)-theta))+(tan(90^(@)-theta))/(cot theta) is 1(b)-1(c)2(d)-2