Home
Class 14
MATHS
Find the value of [(525 +252)^(2)-(525 -...

Find the value of `[(525 +252)^(2)-(525 -252)^(2)]//(525 xx 252)` .
A. 3
B. 4
C. 5
D. 6

A

C

B

A

C

B

D

D

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(525 + 252)^2 - (525 - 252)^2}{525 \times 252}\), we can use the difference of squares formula. ### Step-by-step Solution: 1. **Identify the expression**: We start with the expression: \[ \frac{(525 + 252)^2 - (525 - 252)^2}{525 \times 252} \] 2. **Apply the difference of squares formula**: Recall that \(a^2 - b^2 = (a - b)(a + b)\). Here, let: - \(a = 525 + 252\) - \(b = 525 - 252\) Thus, we can rewrite the expression: \[ (525 + 252)^2 - (525 - 252)^2 = [(525 + 252) - (525 - 252)][(525 + 252) + (525 - 252)] \] 3. **Simplify the terms**: - The first term simplifies to: \[ (525 + 252) - (525 - 252) = 525 + 252 - 525 + 252 = 2 \times 252 = 504 \] - The second term simplifies to: \[ (525 + 252) + (525 - 252) = 525 + 252 + 525 - 252 = 2 \times 525 = 1050 \] 4. **Combine the results**: Now we have: \[ (525 + 252)^2 - (525 - 252)^2 = 504 \times 1050 \] 5. **Substitute back into the expression**: Substitute this back into our original expression: \[ \frac{504 \times 1050}{525 \times 252} \] 6. **Simplify the fraction**: Notice that \(504\) can be expressed as \(2 \times 252\): \[ \frac{(2 \times 252) \times 1050}{525 \times 252} \] Cancel \(252\) from numerator and denominator: \[ \frac{2 \times 1050}{525} \] 7. **Further simplify**: Now, we can simplify \( \frac{1050}{525} = 2\): \[ 2 \times 2 = 4 \] 8. **Final answer**: Thus, the value of the expression is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1. Find the value of 2.52/ 1.2

Find the value of (-2)^-5 times (-2)^6 is (a) 2 (b) -2 (c) -5 (d) 6

Find the value of 525^(2)-475^(2) . (a) 100, (b) 10000 (c) 50000 (d) 100000

525.25 + 52.52+5.2=?

525.25 + 52.52 + 5.2 = ?

Find the vertices of the hyperbola 9x^(2)-16y^(2)-36x+96y-252=0

The value of sqrt(0.064) is (a) 0.008(b)0.08(c)0.252(d)0.8

Find the no. of zeros in expression : (8^(253) - 8^(252) - 8^(251))(3^(221) - 3^(220) - 3^(219))