Home
Class 14
MATHS
Expand (a-4)^(3) A. a^(3)-12a^(2) +48a...

Expand `(a-4)^(3)`
A. `a^(3)-12a^(2) +48a +64`
B. `a^(3) -48a^(2) +12 a -64`
C. `a^(3) +12 a^(2) -48a -64`
D. `a^(3) -12 a^(2) + 48a -64`

A

C

B

A

C

D

D

B

Text Solution

AI Generated Solution

The correct Answer is:
To expand \((a - 4)^3\), we can use the binomial expansion formula or the identity for the cube of a binomial. The identity we will use is: \[ (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \] In this case, \(a\) is \(a\) and \(b\) is \(4\). ### Step-by-Step Solution: 1. **Identify \(a\) and \(b\)**: \[ a = a, \quad b = 4 \] 2. **Apply the identity**: \[ (a - 4)^3 = a^3 - 3a^2(4) + 3a(4^2) - 4^3 \] 3. **Calculate each term**: - First term: \(a^3\) - Second term: \(-3a^2(4) = -12a^2\) - Third term: \(3a(4^2) = 3a(16) = 48a\) - Fourth term: \(-4^3 = -64\) 4. **Combine all the terms**: \[ (a - 4)^3 = a^3 - 12a^2 + 48a - 64 \] Thus, the expanded form of \((a - 4)^3\) is: \[ a^3 - 12a^2 + 48a - 64 \] ### Final Answer: The correct option is **D**: \(a^3 - 12a^2 + 48a - 64\).
Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise :1-64a^(3)-12a+48a^(2)

The value of 64 a ^(3) + 48 a ^(2) b + 12 a ^(2) b + b ^(3) at a =1 and b =-1 is

3 6 12 24 48 96 ?

2^(3^2) = (a)64 (b) 32 (c)256 (d) 512