Home
Class 14
MATHS
If (a+c+1)=0, then find the value of (a^...

If (a+c+1)=0, then find the value of `(a^3+c^3+1-3ac)`
A. `-1`
B. 1
C. 2
D. 0

A

A

B

C

C

B

D

D

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: 1. **Given Equation**: \[ a + c + 1 = 0 \] From this, we can express \(a + c\) as: \[ a + c = -1 \] 2. **Using the Identity for Cubes**: We know the identity for the sum of cubes: \[ a^3 + c^3 = (a + c)(a^2 - ac + c^2) \] We can also use the fact that: \[ a^2 + c^2 = (a + c)^2 - 2ac \] Substituting \(a + c = -1\): \[ a^2 + c^2 = (-1)^2 - 2ac = 1 - 2ac \] 3. **Substituting into the Cube Identity**: Now, substituting \(a + c\) into the identity: \[ a^3 + c^3 = (-1)(a^2 - ac + c^2) \] We can replace \(a^2 + c^2\) in the equation: \[ a^3 + c^3 = -1 \left( (1 - 2ac) - ac \right) \] Simplifying this gives: \[ a^3 + c^3 = -1(1 - 3ac) = -1 + 3ac \] 4. **Finding the Required Expression**: We need to find the value of: \[ a^3 + c^3 + 1 - 3ac \] Substituting \(a^3 + c^3\) from above: \[ a^3 + c^3 + 1 - 3ac = (-1 + 3ac) + 1 - 3ac \] This simplifies to: \[ 0 \] 5. **Final Answer**: Therefore, the value of \(a^3 + c^3 + 1 - 3ac\) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of ( 5^0 + 3^0 ) - 2 ( A ) -1 ( B ) 0 ( C ) 1 ( D ) 2

If a+b+c =0, then the value of frac(a^2 +b^2+c^2) (a^2 - bc) is (A) 0 (B) 1 (C) 2 (D) 3

Find the value of ( 3/5 )^0 is ( a ) 5/3 ( b ) 3/5 ( c ) 1 ( d ) 0

Find the value of [-e ] is ( a ) -2 ( b ) -3 ( c ) -1 ( d ) 0

Find the value of [ 3 - 4( 3-4 )^4 ]^3 , is ( a ) 1 ( b ) -1 ( c ) 0 (d) 7

if a=3,b=0,c=2 and d=1 ,find the vale 3a+3b-6c+4d

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c

Find the value of: |[1 a^2 a^3],[1 b^2 b^3],[1 c^2 c^3]|

If A=[0 1 2 1 2 3 3a1]a n d A_1=[1//2 12//12//-4 3c5//2-3//2 1//2] , then the values of a anti c are equal to 1,1 b. 1,-1 c. 1,2 d. -1,1