Home
Class 14
MATHS
Given that (a^(2)+b^(2))=60, then find t...

Given that `(a^(2)+b^(2))=60`, then find the value of `(a+b)^(2)+ (a-b)^(2)`
A 90 B 120 C 140 D 150

A

C

B

A

C

D

D

B

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a+b)^2 + (a-b)^2\) given that \(a^2 + b^2 = 60\). ### Step-by-Step Solution: 1. **Use the identities for squares**: We know the following identities: - \((a+b)^2 = a^2 + 2ab + b^2\) - \((a-b)^2 = a^2 - 2ab + b^2\) 2. **Add the two identities**: Now, we can add these two equations: \[ (a+b)^2 + (a-b)^2 = (a^2 + 2ab + b^2) + (a^2 - 2ab + b^2) \] 3. **Simplify the expression**: When we combine the terms, we get: \[ (a+b)^2 + (a-b)^2 = a^2 + 2ab + b^2 + a^2 - 2ab + b^2 \] The \(2ab\) and \(-2ab\) terms cancel each other out: \[ = a^2 + b^2 + a^2 + b^2 = 2a^2 + 2b^2 \] 4. **Factor out the common term**: We can factor out the 2: \[ = 2(a^2 + b^2) \] 5. **Substitute the given value**: We know from the problem that \(a^2 + b^2 = 60\). Therefore: \[ = 2 \times 60 = 120 \] ### Final Answer: Thus, the value of \((a+b)^2 + (a-b)^2\) is \(120\). ### Answer Options: - A) 90 - B) 120 - C) 140 - D) 150 The correct answer is **B) 120**.
Promotional Banner

Similar Questions

Explore conceptually related problems

If [a b c]=2 , then find the value of [(a+2b-c)(a-b)(a-b-c)] .

If /_ A = 90^@ , then find the value of tan ((B+C)/(2))

if angle A=90^(@) , then find the value of tan ((B+C)/(2))

If a-b=3 and a^(2)+b^(2)=29, find the value of ab. (a) 10 (b) 12 (c) 15 (d) 18

For real a, b and c if a^(2) + b^(2) + c^(2) = ab + bc + ca , then find the value of (a + b + c)^(2) A. 9a^(2) B. 81 a^(2) C. 27 a^(2) D. 24 a^(2)

If A+B=90^(@) then find the value of sin^(2)A+sin^(2)B+tan A tan B

If a = 2 , b = -2 and c = 2 , then find the value of a^2b + b^2c + c^2a