Home
Class 14
MATHS
If a= 5, b= 4, c=8 then find the value o...

If `a= 5, b= 4, c=8` then find the value of `(a^(3) + b^(3) + c^(3)-3abc)//(ab+ bc+ ca- a^(2) -b^(2)-c^(2))`
A 15 B 17 C `-17` D `-15`

A

B

B

C

C

D

D

A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((a^3 + b^3 + c^3 - 3abc) / (ab + bc + ca - a^2 - b^2 - c^2)\) given \(a = 5\), \(b = 4\), and \(c = 8\), we can follow these steps: ### Step 1: Calculate \(a^3\), \(b^3\), and \(c^3\) - \(a^3 = 5^3 = 125\) - \(b^3 = 4^3 = 64\) - \(c^3 = 8^3 = 512\) ### Step 2: Calculate \(3abc\) - \(abc = 5 \times 4 \times 8 = 160\) - Thus, \(3abc = 3 \times 160 = 480\) ### Step 3: Substitute into the numerator - The numerator becomes: \[ a^3 + b^3 + c^3 - 3abc = 125 + 64 + 512 - 480 \] - Calculate: \[ 125 + 64 = 189 \] \[ 189 + 512 = 701 \] \[ 701 - 480 = 221 \] ### Step 4: Calculate \(ab\), \(bc\), and \(ca\) - \(ab = 5 \times 4 = 20\) - \(bc = 4 \times 8 = 32\) - \(ca = 8 \times 5 = 40\) ### Step 5: Calculate \(a^2\), \(b^2\), and \(c^2\) - \(a^2 = 5^2 = 25\) - \(b^2 = 4^2 = 16\) - \(c^2 = 8^2 = 64\) ### Step 6: Substitute into the denominator - The denominator becomes: \[ ab + bc + ca - a^2 - b^2 - c^2 = 20 + 32 + 40 - 25 - 16 - 64 \] - Calculate: \[ 20 + 32 = 52 \] \[ 52 + 40 = 92 \] \[ 92 - 25 = 67 \] \[ 67 - 16 = 51 \] \[ 51 - 64 = -13 \] ### Step 7: Final calculation of the expression - Now we can substitute the values into the expression: \[ \frac{221}{-13} = -17 \] ### Final Answer Thus, the value of the expression is \(-17\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a=-5,b=-6 and c=10, then the value of (a^(3)+b^(3)+c^(3)-3abc)/(ab+bc+ca-a^(2)-b^(2)-c^(2))

Value of (a^(3)+b^(3)+c^(3)-3abc)/(ab+bc+ca-a^(2)-b^(2)-c^(2)) , when a=-5, b=-6, c=10 is

If a+b+c=6 and ab+bc+ca=11 find the value of a^(3)+b^(3)+c^(3)-3abc

If a+b+c=9 and ab+bc+ca=26 find the value of a^(3)+b^(3)+c^(3)-3abc

If a+b+c=3 and ab+bc+ca=5 is given then find the value of a^(3)+b^(3)+c^(3)-3abc

If a= 25, b= 15, c= - 10 then (a^(3) + b^(3) + c^(3) - 3abc)/((a-b)^(2) + (b-c)^(2) + (c-a)^(2))

Find the value of a^(3)+b^(3)+c^(3)-3abc if a+b+c=8 and ab+bc+ca=19 .

If a+b+c=6 and ab+bc+ca=11, find the value of a^(3)+b^(3)+c^(3)-3abc.