Home
Class 14
MATHS
Simplify sqrt""50+ sqrt""18- sqrt""8 A...

Simplify `sqrt""50+ sqrt""18- sqrt""8`
A. `8 sqrt2`
B. `7 sqrt2`
C. `6 sqrt2`
D. `5 sqrt""2`

A

A

B

C

C

D

D

B

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt{50} + \sqrt{18} - \sqrt{8} \), we will follow these steps: ### Step 1: Simplify each square root term 1. **Simplify \( \sqrt{50} \)**: \[ \sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2} \] 2. **Simplify \( \sqrt{18} \)**: \[ \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} \] 3. **Simplify \( \sqrt{8} \)**: \[ \sqrt{8} = \sqrt{4 \times 2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2} \] ### Step 2: Substitute the simplified terms back into the expression Now, we can substitute these simplified terms back into the original expression: \[ \sqrt{50} + \sqrt{18} - \sqrt{8} = 5\sqrt{2} + 3\sqrt{2} - 2\sqrt{2} \] ### Step 3: Combine like terms Combine the coefficients of \( \sqrt{2} \): \[ (5 + 3 - 2)\sqrt{2} = 6\sqrt{2} \] ### Final Answer Thus, the simplified expression is: \[ \boxed{6\sqrt{2}} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Simplify sqrt50 + sqrt 18 - sqrt 8 (A) 8 sqrt 2 (B) 7 sqrt 2 (C) 6 sqrt 2 5 sqrt 2

Simplify (sqrt5+sqrt2)^2

Knowledge Check

  • Simplify: 2/(sqrt(7) + sqrt(5)) + 7/(sqrt(12) - sqrt(5)) - 5/(sqrt(12) - sqrt(7)) ,

    A
    5
    B
    2
    C
    1
    D
    0
  • Similar Questions

    Explore conceptually related problems

    Simplify: (sqrt5-sqrt2)(sqrt2-sqrt3)

    Simplify (2+sqrt3)/(sqrt5+sqrt2)

    Simplify (sqrt3+sqrt2)/(sqrt3+sqrt6)

    simplify (5+sqrt(7))(5+sqrt(2))

    Simplify (sqrt3+sqrt2)^6+(sqrt3-sqrt2)^6

    Simplify : 4sqrt(2)-2sqrt(8)+(3)/(sqrt(2))

    (sqrt8)^(1/3) = ? (a) 2 (b) 4 (c) sqrt2 (d) 2sqrt2