Home
Class 14
MATHS
Simplify (81x^(2)-49 y^(2))/(9x + 7y) ...

Simplify `(81x^(2)-49 y^(2))/(9x + 7y)`
A. `9x+7y`
B. `9x- 7y`
C. 9x
D. 7y

A

C

B

A

C

B

D

D

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((81x^2 - 49y^2)/(9x + 7y)\), we can follow these steps: ### Step 1: Recognize the difference of squares The expression in the numerator, \(81x^2 - 49y^2\), is a difference of squares. We can use the formula: \[ a^2 - b^2 = (a - b)(a + b) \] where \(a = 9x\) and \(b = 7y\). ### Step 2: Apply the difference of squares formula Using the formula, we can rewrite the numerator: \[ 81x^2 - 49y^2 = (9x)^2 - (7y)^2 = (9x - 7y)(9x + 7y) \] ### Step 3: Substitute back into the expression Now we substitute this back into our original expression: \[ \frac{(9x - 7y)(9x + 7y)}{9x + 7y} \] ### Step 4: Cancel the common terms We can cancel \(9x + 7y\) from the numerator and the denominator: \[ 9x - 7y \] ### Step 5: Final result Thus, the simplified form of the expression is: \[ 9x - 7y \] ### Conclusion The correct answer is option B: \(9x - 7y\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify frac( 81 x^2 - 49y^2)(9x + 7y)

Simplify the following: (9x^(2)-42xy+49y^(2))/(3x-7y)

Simplify: [5-3x+2y-(2x-y)]-(3x-7y+9)

Simplify : 7x^(3)+8y^(3)-(4x+3y)(16x^(2)-12xy+9y^(2))

The value of 9x^(2) + 49y^(2) - 42 xy , when x = 15 and y = 3 is

(x)/(2) - ( y )/(9) = 6, ( x) /( 7) + ( y ) /(3) = 5 .

Add -7x y ,\ -3x y and -9x ydot

Add : 5x ^(2) - 3xy + 4y ^(2) - 9, 7y ^(2)+ 5xy - 2x ^(2) + 13

Simplify : (i) (5x - 9y) - (-7x + y) (ii) (x^(2) -x) -(1)/(2)(x - 3 + 3x^(2)) (iii) [7 - 2x + 5y - (x -y)]-(5x + 3y -7) (iv) ((1)/(3)y^(2) - (4)/(7)y + 5) - ((2)/(7)y - (2)/(3)y^(2) + 2) - ((1)/(7)y - 3 + 2y^(2))