Home
Class 14
MATHS
If a + b = 5, ab = -50 then find the val...

If a + b = 5, ab = -50 then find the value of a - b.

A

10

B

25

C

15

D

-10

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a - b \) given that \( a + b = 5 \) and \( ab = -50 \), we can follow these steps: ### Step 1: Use the given equations We have: 1. \( a + b = 5 \) 2. \( ab = -50 \) ### Step 2: Set up the equation for \( a \) and \( b \) We can represent \( a \) and \( b \) as the roots of a quadratic equation. The standard form of a quadratic equation based on the sum and product of its roots is: \[ x^2 - (a + b)x + ab = 0 \] Substituting the values we have: \[ x^2 - 5x - 50 = 0 \] ### Step 3: Solve the quadratic equation To solve for \( x \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -5 \), and \( c = -50 \). Plugging in these values: \[ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot (-50)}}{2 \cdot 1} \] \[ x = \frac{5 \pm \sqrt{25 + 200}}{2} \] \[ x = \frac{5 \pm \sqrt{225}}{2} \] \[ x = \frac{5 \pm 15}{2} \] ### Step 4: Calculate the roots Calculating the two possible values for \( x \): 1. \( x = \frac{20}{2} = 10 \) 2. \( x = \frac{-10}{2} = -5 \) Thus, the roots are \( a = 10 \) and \( b = -5 \). ### Step 5: Find \( a - b \) Now we can find \( a - b \): \[ a - b = 10 - (-5) = 10 + 5 = 15 \] ### Final Answer The value of \( a - b \) is \( 15 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If a-b = 5, ab = 14, find the value of a + b

a+b=8 and ab=15 then find the value of a&b

If a^2 + b^2 = 53 and ab = 14, then find the value of a +b

If a/b = 5/8 , then find the value of ( a - b )/b is

If a + b = 9 and ab = 10, find the value of a^2+b^2.

If ab + bc + ca = 0, then find the value of (b)/((a+b)(b+c))+(c)/((a+c)(c+b))+(a)/((a+b)(c+a))