Home
Class 14
MATHS
If cosec theta = 3x and cot theta = 3/x,...

If `cosec theta = 3x` and `cot theta` = 3/x, then what is the value of `x^2- 1//x^2`?

A

A)3

B

B)`1//3`

C

C)9

D

D)`1//9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( \csc \theta = 3x \) 2. \( \cot \theta = \frac{3}{x} \) We need to find the value of \( x^2 - \frac{1}{x^2} \). ### Step 1: Use the identity We know from trigonometric identities that: \[ \csc^2 \theta - \cot^2 \theta = 1 \] ### Step 2: Square the given values Now, let's square both sides of the given equations: - From \( \csc \theta = 3x \): \[ \csc^2 \theta = (3x)^2 = 9x^2 \] - From \( \cot \theta = \frac{3}{x} \): \[ \cot^2 \theta = \left(\frac{3}{x}\right)^2 = \frac{9}{x^2} \] ### Step 3: Substitute into the identity Now substitute these squared values into the identity: \[ 9x^2 - \frac{9}{x^2} = 1 \] ### Step 4: Rearranging the equation Rearranging gives us: \[ 9x^2 - \frac{9}{x^2} = 1 \] \[ 9x^2 = 1 + \frac{9}{x^2} \] ### Step 5: Multiply through by \( x^2 \) To eliminate the fraction, multiply through by \( x^2 \): \[ 9x^4 = x^2 + 9 \] ### Step 6: Rearranging to form a quadratic equation Rearranging gives us: \[ 9x^4 - x^2 - 9 = 0 \] ### Step 7: Let \( y = x^2 \) Let \( y = x^2 \), then we have: \[ 9y^2 - y - 9 = 0 \] ### Step 8: Solve the quadratic equation Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 9 \), \( b = -1 \), and \( c = -9 \). \[ y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 9 \cdot (-9)}}{2 \cdot 9} \] \[ y = \frac{1 \pm \sqrt{1 + 324}}{18} \] \[ y = \frac{1 \pm \sqrt{325}}{18} \] ### Step 9: Finding \( x^2 - \frac{1}{x^2} \) Now we need to find \( x^2 - \frac{1}{x^2} \): \[ x^2 - \frac{1}{x^2} = y - \frac{1}{y} \] \[ = \frac{y^2 - 1}{y} \] ### Step 10: Substitute \( y \) Now substituting \( y = \frac{1 + \sqrt{325}}{18} \) or \( y = \frac{1 - \sqrt{325}}{18} \) into \( y^2 - 1 \) and simplifying will yield the final answer. However, we can also directly use the earlier derived equation: \[ 9x^2 - \frac{9}{x^2} = 1 \implies x^2 - \frac{1}{x^2} = \frac{1}{9} \] ### Final Answer Thus, the value of \( x^2 - \frac{1}{x^2} \) is: \[ \frac{1}{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cosec theta = 3x and cot theta = (3)/(x) , then find the value of (x^(2) - (1)/(x^(2))) .

If cosec theta=3x and cot theta=3/x, (x ne 0) then the value of 6(x^2- 1/x^2) is: यदि cosec theta=3x और cot theta=3/x है, जहाँ (x ne 0) है, तो 6(x^2- 1/x^2) मान क्या होगा ?

If cosec theta=3x and cot theta=3/x,(x ne 0) , then the value of 6(x^2-1/x^2) is: यदि cosec theta=3x और cot theta=3/x,(x ne 0) है, तो 6(x^2-1/x^2) का मान है:

If cot theta=5x and cosec theta= 5/x (x ne 0) , then the value of 5(x^2- 1/x^2) is: यदि cot theta=5x तथा cosec theta= 5/x (x ne 0) है, तो 5(x^2- 1/x^2) का मान ज्ञात करें |

If 0 lt theta lt 90^@, sin theta = 3/5 and x = cot theta ,then what is the value of 1 + 3x + 9x^2 + 27x^3 +81 x^4 +243x^5 ?

If cos ec theta=2x and cot theta=(2)/(x), find the value of 2(x^(2)-(1)/(x^(2)))

If x sin theta = ( 5 sqrt3)/(2) and x cos theta = (5)/(2) then what is the value of x ?

If 3x=cos ec theta and (3)/(x)=cot theta, then find the value of 3(x^(2)-(1)/(x^(2)))

If cot theta=5x and cosec theta=5/x,(x ne 0) , then the value of 5(x^2-1/x^2) is: यदि cot theta=5x और cosec theta=5/x,(x ne 0) है, तो 5(x^2-1/x^2) का मान है:

cosec^2 theta - cot^2 theta = 1 +…..