Home
Class 14
MATHS
If sin theta = 5//13, then find the valu...

If `sin theta = 5//13`, then find the value of (cot`theta - tan theta)//2cot theta` ?

A

143/195

B

119/254

C

173/288

D

119/288

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\cot \theta - \tan \theta) / (2 \cot \theta)\) given that \(\sin \theta = \frac{5}{13}\). ### Step-by-Step Solution: 1. **Identify the values of sine, cosine, and tangent**: - Given \(\sin \theta = \frac{5}{13}\), we can use the Pythagorean theorem to find \(\cos \theta\). - In a right triangle, if \(\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}\), then the opposite side is 5 and the hypotenuse is 13. - To find the adjacent side, we use: \[ \text{adjacent} = \sqrt{(\text{hypotenuse})^2 - (\text{opposite})^2} = \sqrt{13^2 - 5^2} = \sqrt{169 - 25} = \sqrt{144} = 12 \] - Therefore, \(\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{12}{13}\). 2. **Calculate \(\tan \theta\) and \(\cot \theta\)**: - \(\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{5/13}{12/13} = \frac{5}{12}\) - \(\cot \theta = \frac{1}{\tan \theta} = \frac{12}{5}\) 3. **Substitute values into the expression**: - We need to calculate \((\cot \theta - \tan \theta) / (2 \cot \theta)\): - Substitute \(\cot \theta\) and \(\tan \theta\): \[ \cot \theta - \tan \theta = \frac{12}{5} - \frac{5}{12} \] - To subtract these fractions, we need a common denominator: \[ \frac{12}{5} = \frac{12 \times 12}{5 \times 12} = \frac{144}{60}, \quad \frac{5}{12} = \frac{5 \times 5}{12 \times 5} = \frac{25}{60} \] - Now, subtract: \[ \cot \theta - \tan \theta = \frac{144}{60} - \frac{25}{60} = \frac{119}{60} \] 4. **Calculate \(2 \cot \theta\)**: - \(2 \cot \theta = 2 \times \frac{12}{5} = \frac{24}{5}\) 5. **Final calculation**: - Now substitute these values into the expression: \[ \frac{\cot \theta - \tan \theta}{2 \cot \theta} = \frac{\frac{119}{60}}{\frac{24}{5}} = \frac{119}{60} \times \frac{5}{24} = \frac{119 \times 5}{60 \times 24} = \frac{595}{1440} \] - Simplifying \(\frac{595}{1440}\) gives us the final answer. ### Final Answer: The value of \((\cot \theta - \tan \theta) / (2 \cot \theta)\) is \(\frac{119}{288}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If 3 tan theta = sec theta , then find the value of cot theta .

If sec theta =(5)/(4),"find the value of "((2cos theta - sin theta ))/((cot theta - tan theta ))=.

If cosec theta = (13)/(12) , then find the values of cot theta and sin theta .

If sin theta = 3/5 , then the value of (tan theta + cos theta)/(cot theta + cosec theta) is equal to

If tan theta+cot theta=6 , then find the value of tan^2 theta+cot^2 theta . यदि tan theta+cot theta=6 , तो tan^2 theta+cot^2 theta का मान ज्ञात कीजिए।

If 5 sin theta=4 , then the value of (sec theta+4 cot theta)/(4 tan theta-5cos theta) is यदि 5 sin theta=4 है, तो (sec theta+4 cot theta)/(4 tan theta-5cos theta) का मान क्या होगा ?

If sqrt(3)sin theta=cos theta, find the value of (sin theta tan theta(1+cot theta))/(sin theta+cos theta)

Prove that cot theta-tan theta=2cot 2 theta .