Home
Class 14
MATHS
SinA=1//x then CosA= ?...

`SinA=1//x` then `CosA=` ?

A

`x2+1sqrt'''x X2+1x`

B

`"xx"2-1sqrt'''x X2-1`

C

`x2-1sqrt'''x X2-1x`

D

`"xx"2+1sqrt''' "xx"2+1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos A \) given that \( \sin A = \frac{1}{x} \), we can use the Pythagorean identity which states that: \[ \sin^2 A + \cos^2 A = 1 \] ### Step-by-step Solution: 1. **Start with the Pythagorean Identity**: \[ \sin^2 A + \cos^2 A = 1 \] 2. **Substitute the value of \( \sin A \)**: Since \( \sin A = \frac{1}{x} \), we can substitute this into the identity: \[ \left(\frac{1}{x}\right)^2 + \cos^2 A = 1 \] 3. **Calculate \( \sin^2 A \)**: \[ \frac{1}{x^2} + \cos^2 A = 1 \] 4. **Isolate \( \cos^2 A \)**: To find \( \cos^2 A \), we rearrange the equation: \[ \cos^2 A = 1 - \frac{1}{x^2} \] 5. **Combine the terms**: To combine the terms on the right side, we can express 1 as \( \frac{x^2}{x^2} \): \[ \cos^2 A = \frac{x^2}{x^2} - \frac{1}{x^2} = \frac{x^2 - 1}{x^2} \] 6. **Take the square root**: To find \( \cos A \), we take the square root of both sides: \[ \cos A = \sqrt{\frac{x^2 - 1}{x^2}} \] 7. **Simplify the expression**: This can be simplified further: \[ \cos A = \frac{\sqrt{x^2 - 1}}{x} \] ### Final Answer: \[ \cos A = \frac{\sqrt{x^2 - 1}}{x} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

[ln a Delta ABC,],sinA=4/5 then cosA=

If sinA=1/3 then cosA. cosecA+tanA.secA=

Evaluate : CosA - SinA = 1 ,then find the value of CosA + SinA

Evaluate : CosA - SinA = 1 ,then find the value of CosA + SinA

if SinA = 4/5 then find (1-SinA)/(1+CosA)

If sinA+cosB=a and sinB+cosA=b then sin(A+B)=

SinA - CosA = 0 , Sin^4A + Cos^4A = ?

If (2sinA)/(1+sinA+cosA)=k then (1+sinA-cosA)/(1+sinA)=

Show that : Sin^4A - Cos^4A = ( SinA + CosA ) ( SinA - CosA )