Home
Class 14
MATHS
If sinA = 4/5, then find the value of (1...

If sinA = 4/5, then find the value of (1 + tan A)/(1 + cot A)?

A

`7/3`

B

`3/4`

C

`4/7`

D

`4/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((1 + \tan A)/(1 + \cot A)\) given that \(\sin A = \frac{4}{5}\). ### Step-by-step Solution: 1. **Identify the values of sine, cosine, and tangent:** Given \(\sin A = \frac{4}{5}\), we can find \(\cos A\) using the Pythagorean identity: \[ \sin^2 A + \cos^2 A = 1 \] Substituting the value of \(\sin A\): \[ \left(\frac{4}{5}\right)^2 + \cos^2 A = 1 \] \[ \frac{16}{25} + \cos^2 A = 1 \] \[ \cos^2 A = 1 - \frac{16}{25} = \frac{9}{25} \] Taking the square root: \[ \cos A = \frac{3}{5} \] 2. **Calculate \(\tan A\) and \(\cot A\):** \(\tan A\) is defined as: \[ \tan A = \frac{\sin A}{\cos A} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] \(\cot A\) is the reciprocal of \(\tan A\): \[ \cot A = \frac{1}{\tan A} = \frac{3}{4} \] 3. **Substitute \(\tan A\) and \(\cot A\) into the expression:** We need to find: \[ \frac{1 + \tan A}{1 + \cot A} = \frac{1 + \frac{4}{3}}{1 + \frac{3}{4}} \] Simplifying the numerator: \[ 1 + \frac{4}{3} = \frac{3}{3} + \frac{4}{3} = \frac{7}{3} \] Simplifying the denominator: \[ 1 + \frac{3}{4} = \frac{4}{4} + \frac{3}{4} = \frac{7}{4} \] 4. **Combine the results:** Now we have: \[ \frac{\frac{7}{3}}{\frac{7}{4}} = \frac{7}{3} \times \frac{4}{7} \] The \(7\)s cancel out: \[ = \frac{4}{3} \] ### Final Answer: Thus, the value of \(\frac{1 + \tan A}{1 + \cot A}\) is \(\frac{4}{3}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If sinA=(3)/(4) , then find the value of tan A.

If cosA = 5/13 , find the value of tan A + cot A

Find the value of cot(tan^(-1)a+cot^(-1)a)

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

Find the value of (1+tan^(2)theta)/(1+cot^(2)theta)

If sinA+cosecA=3 , then find the value of (sin^(4)A+1)/(sin^(2)A) .

Find the value of: cot(tan^(-1)a+cot^(-1)a)

Find the value of tan { cot ^(-1) ((-2)/3)}

Evaluate : CosA - SinA = 1 ,then find the value of CosA + SinA

Evaluate : CosA - SinA = 1 ,then find the value of CosA + SinA