Home
Class 14
MATHS
Find the unit digit of (432)^(412) xx (4...

Find the unit digit of `(432)^(412) xx (499)^(431)`

A

A)2

B

B)4

C

C)6

D

D)8

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit digit of \( (432)^{412} \times (499)^{431} \), we will break down the problem into manageable steps. ### Step 1: Find the unit digit of \( 432^{412} \) 1. **Identify the unit digit of 432**: The unit digit of 432 is 2. 2. **Determine the cyclicity of the unit digit of 2**: The powers of 2 have a cyclicity of 4: - \( 2^1 = 2 \) (unit digit 2) - \( 2^2 = 4 \) (unit digit 4) - \( 2^3 = 8 \) (unit digit 8) - \( 2^4 = 16 \) (unit digit 6) - \( 2^5 = 32 \) (unit digit 2) and so on. 3. **Find \( 412 \mod 4 \)**: - \( 412 \div 4 = 103 \) remainder \( 0 \). - Thus, \( 412 \mod 4 = 0 \). 4. **Determine the unit digit for \( 2^{412} \)**: Since \( 412 \mod 4 = 0 \), the unit digit corresponds to \( 2^4 \), which is 6. ### Step 2: Find the unit digit of \( 499^{431} \) 1. **Identify the unit digit of 499**: The unit digit of 499 is 9. 2. **Determine the cyclicity of the unit digit of 9**: The powers of 9 have a cyclicity of 2: - \( 9^1 = 9 \) (unit digit 9) - \( 9^2 = 81 \) (unit digit 1) - \( 9^3 = 729 \) (unit digit 9) and so on. 3. **Find \( 431 \mod 2 \)**: - \( 431 \div 2 = 215 \) remainder \( 1 \). - Thus, \( 431 \mod 2 = 1 \). 4. **Determine the unit digit for \( 9^{431} \)**: Since \( 431 \mod 2 = 1 \), the unit digit corresponds to \( 9^1 \), which is 9. ### Step 3: Combine the unit digits Now we have: - The unit digit of \( 432^{412} \) is 6. - The unit digit of \( 499^{431} \) is 9. To find the unit digit of the product \( (432^{412} \times 499^{431}) \): - Calculate \( 6 \times 9 = 54 \). - The unit digit of 54 is 4. ### Final Answer Thus, the unit digit of \( (432)^{412} \times (499)^{431} \) is **4**.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the unit digit of (12)^(78)

Find the unit digit of (33)^(123)

Find the units digit of 8^(25)

Find the units digit of 8^25 .

Find unit digit of 2^(11) !

Find the unit digit of 676xx543xx19 .

Find the unit digit of 676 xx 543 xx 19.