Home
Class 14
MATHS
If x^(3) + y^(3)=35 and x+y=5 then find ...

If `x^(3) + y^(3)=35 and x+y=5` then find the value of `x^(4) + y^(4)`

A

A)87

B

B)89

C

C)97

D

D)93

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^4 + y^4 \) given that \( x^3 + y^3 = 35 \) and \( x + y = 5 \). ### Step-by-Step Solution: 1. **Use the identity for the sum of cubes**: The identity for the sum of cubes is given by: \[ x^3 + y^3 = (x+y)(x^2 - xy + y^2) \] We know \( x + y = 5 \), so we can substitute this into the identity: \[ 35 = 5(x^2 - xy + y^2) \] 2. **Simplify the equation**: Dividing both sides by 5 gives: \[ x^2 - xy + y^2 = 7 \] 3. **Use the square of the sum**: We also know that: \[ (x+y)^2 = x^2 + 2xy + y^2 \] Substituting \( x + y = 5 \): \[ 5^2 = x^2 + 2xy + y^2 \implies 25 = x^2 + 2xy + y^2 \] 4. **Express \( x^2 + y^2 \)**: We can express \( x^2 + y^2 \) in terms of \( xy \): \[ x^2 + y^2 = (x^2 - xy + y^2) + xy = 7 + xy \] Thus: \[ 25 = (7 + xy) + 2xy \implies 25 = 7 + 3xy \] 5. **Solve for \( xy \)**: Rearranging gives: \[ 3xy = 25 - 7 \implies 3xy = 18 \implies xy = 6 \] 6. **Find \( x^2 + y^2 \)**: Now we can find \( x^2 + y^2 \): \[ x^2 + y^2 = 7 + xy = 7 + 6 = 13 \] 7. **Use the identity for the sum of fourth powers**: The identity for the sum of fourth powers is: \[ x^4 + y^4 = (x^2 + y^2)^2 - 2(xy)^2 \] Substituting the values we found: \[ x^4 + y^4 = (13)^2 - 2(6)^2 \] 8. **Calculate**: \[ x^4 + y^4 = 169 - 2 \times 36 = 169 - 72 = 97 \] ### Final Answer: Thus, the value of \( x^4 + y^4 \) is \( \boxed{97} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(3) + y^(3) = 175 and x + y = 7 . Find the value of x^(4) + y^(4) .

If x^(3) + y^(3) = 16 and x + y = 4 , then the value of x^(4) + y^(4) is :

If x=3 and y=4 , find the value of 4x-3y

If x=3 and y=4 , find the value of 3x+2y

If 4x-5y=37 and 3x-4y=25, then find the value of x-y.

If x=3 and y=4 , find the value of 4x^(2)+5x+3

If x^3+y^3=16 and x + y = 4, then find the value of x^4+y^4 . यदि x^3+y^3=16 और x + y = 4 है, तो x^4+y^4 का मान ज्ञात करें

IF 3x +5Y = 9 and 5x + 3y =7 then find the value of x+y