Home
Class 14
MATHS
The value of (sec^2theta+2tan theta cot ...

The value of `(sec^2theta+2tan theta cot theta -tan^2theta)` is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sec^2 \theta + 2 \tan \theta \cot \theta - \tan^2 \theta \), we will follow these steps: ### Step 1: Use the Pythagorean Identity We know that: \[ \sec^2 \theta = 1 + \tan^2 \theta \] We will substitute \( \sec^2 \theta \) in the expression. ### Step 2: Substitute in the Expression Replacing \( \sec^2 \theta \) in the expression gives: \[ 1 + \tan^2 \theta + 2 \tan \theta \cot \theta - \tan^2 \theta \] ### Step 3: Simplify the Expression Now, we can simplify the expression: \[ 1 + \tan^2 \theta - \tan^2 \theta + 2 \tan \theta \cot \theta \] The \( \tan^2 \theta \) terms cancel each other out: \[ 1 + 2 \tan \theta \cot \theta \] ### Step 4: Simplify \( 2 \tan \theta \cot \theta \) Recall that \( \cot \theta = \frac{1}{\tan \theta} \), so: \[ 2 \tan \theta \cot \theta = 2 \tan \theta \cdot \frac{1}{\tan \theta} = 2 \] ### Step 5: Final Calculation Now substitute back into the expression: \[ 1 + 2 = 3 \] ### Final Answer Thus, the value of \( \sec^2 \theta + 2 \tan \theta \cot \theta - \tan^2 \theta \) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (sec^2theta + 2 tan theta cot theta - tan^2 theta ) is

The value of log[(sec theta+tan theta)(sec theta-tan theta)] is ________

The value of (sec^2 theta(2+tan^2 theta +cot^2 theta) div (sin^2 theta-tan^2 theta))/((cosec^2 theta+sec^2 theta)(1+ cot^2 theta)^2) is: (sec^2 theta(2+tan^2 theta +cot^2 theta) div (sin^2 theta-tan^2 theta))/((cosec^2 theta+sec^2 theta)(1+ cot^2 theta)^2) का मान ज्ञात कीजिए?

If sec theta =(5)/(4),"find the value of "((2cos theta - sin theta ))/((cot theta - tan theta ))=.

Prove each of the following identities : (i) ("cosec"theta + cot theta )/("cosec"theta - cot theta ) = ("cosec" theta + cot theta)^(2) = 1+2cot^(2) theta + 2"cosec" theta cot theta (ii) (sec theta + tan theta ) /( sec theta - tan theta) =(sec theta + tan theta )^(2) = 1+ 2tan^(2) theta + 2 sec theta tan theta

If sec theta=(5)/(4), find the value of (sin theta-2cos theta)/(tan theta-cot theta)

If cot theta-tan theta=sec theta then theta=

If cot theta - tan theta = sec theta , then theta=