Home
Class 14
MATHS
Expand: ( s + 2)^3...

Expand: `( s + 2)^3`

A

`s^3 + 3s^2 + 12 s + 8`

B

`s^(3) + 3s^(2) + 6s + 8`

C

`s^(3) + 6s^(2) + 12 s + 8`

D

`s^(3) + 6s^(2) + 6s +8`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((s + 2)^3\), we can use the binomial theorem or the formula for the cube of a binomial. The formula for the cube of a binomial \((a + b)^3\) is given by: \[ (a + b)^3 = a^3 + b^3 + 3ab(a + b) \] In our case, \(a = s\) and \(b = 2\). ### Step 1: Identify \(a\) and \(b\) Let \(a = s\) and \(b = 2\). ### Step 2: Apply the formula Using the formula, we can expand \((s + 2)^3\): \[ (s + 2)^3 = s^3 + 2^3 + 3 \cdot s \cdot 2 \cdot (s + 2) \] ### Step 3: Calculate \(2^3\) Now, calculate \(2^3\): \[ 2^3 = 8 \] ### Step 4: Calculate \(3 \cdot s \cdot 2\) Next, calculate \(3 \cdot s \cdot 2\): \[ 3 \cdot s \cdot 2 = 6s \] ### Step 5: Substitute back into the equation Now substitute these values back into the equation: \[ (s + 2)^3 = s^3 + 8 + 6s(s + 2) \] ### Step 6: Expand \(6s(s + 2)\) Now, expand \(6s(s + 2)\): \[ 6s(s + 2) = 6s^2 + 12s \] ### Step 7: Combine all terms Now, combine all the terms: \[ (s + 2)^3 = s^3 + 6s^2 + 12s + 8 \] ### Final Answer Thus, the expanded form of \((s + 2)^3\) is: \[ s^3 + 6s^2 + 12s + 8 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Expand : ( y+2)^6

Expand (i) (3x - 2y)^(2) (ii) ((3)/(4) p - (5)/(6) q)^(2)

Expand (i) (3x+2)^3 (ii) (3a+(1)/(4b))^3 (iii) (1+(2)/(3)a)^3

Expand (2x - 3x^2)^5

Expand, (1+x+x^2)^3

Expand (x + 3) (x - 2) (x + 6).

Expand (3x + 4y)^(2) .

Expand : (ii ) l^4 ( iii ) s^9