Home
Class 14
MATHS
The value of (sintheta+costheta)^(2)= ...

The value of `(sintheta+costheta)^(2)`=
A. `1+sin^(2)theta`
B. `sin^(2)theta+cos^(2)theta`
C. `1+2costhetasintheta`
D. `cos^(2)theta+1`

A

D

B

A

C

B

D

C

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sin \theta + \cos \theta)^2\), we can use the algebraic identity for the square of a binomial: \[ (a + b)^2 = a^2 + b^2 + 2ab \] ### Step 1: Identify \(a\) and \(b\) Here, let \(a = \sin \theta\) and \(b = \cos \theta\). ### Step 2: Apply the formula Using the formula, we can expand \((\sin \theta + \cos \theta)^2\): \[ (\sin \theta + \cos \theta)^2 = \sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta \] ### Step 3: Simplify using Pythagorean identity We know from the Pythagorean identity that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting this into our expression gives: \[ (\sin \theta + \cos \theta)^2 = 1 + 2 \sin \theta \cos \theta \] ### Step 4: Final expression Thus, we can conclude that: \[ (\sin \theta + \cos \theta)^2 = 1 + 2 \sin \theta \cos \theta \] ### Step 5: Identify the correct option Looking at the options provided: - A. \(1 + \sin^2 \theta\) - B. \(\sin^2 \theta + \cos^2 \theta\) - C. \(1 + 2 \cos \theta \sin \theta\) - D. \(\cos^2 \theta + 1\) The correct answer is **C. \(1 + 2 \sin \theta \cos \theta\)**.
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

(2sin theta*cos theta-cos theta)/(1-sin theta+sin^(2)theta-cos^(2)theta)=cot theta

(sin ^ (4) theta + cos ^ (4) theta) / (1-2sin ^ (2) theta cos ^ (2) theta) = 1

tan theta * (1+cos 2 theta)= A) 2 sin theta B) sin 2 theta C) 2 cos theta D) cos 2 theta

The value of (1-2 sin^2 theta cos^2 theta )/(sin^4 theta +cos^4 theta )-1 is: (1-2 sin^2 theta cos^2 theta )/(sin^4 theta +cos^4 theta )-1 का मान है :

((sin theta+cos theta)^(2)-1)/(sin theta*cos theta)

If costheta+cos^(2)theta=1 , then find the value of sin^(4)theta+sin^(2)theta .

If sintheta+sin^(2)theta=1 , then find the value of cos^(2)theta+cos^(4)theta .

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta) =