Home
Class 14
MATHS
If sintheta=1//sqrt""2 then (tantheta+co...

If `sintheta=1//sqrt""2` then `(tantheta+costheta)=`
A. `1//sqrt""2`
B. `2//sqrt""2`
C. `3//sqrt""2`
D. `(1+sqrt""2)//sqrt""2`

A

B

B

D

C

A

D

C

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: 1. **Given**: \(\sin \theta = \frac{1}{\sqrt{2}}\) ### Step 1: Determine the values of \(\cos \theta\) and \(\tan \theta\) Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ \sin^2 \theta = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] Substituting into the identity: \[ \frac{1}{2} + \cos^2 \theta = 1 \] \[ \cos^2 \theta = 1 - \frac{1}{2} = \frac{1}{2} \] Taking the square root: \[ \cos \theta = \frac{1}{\sqrt{2}} \quad (\text{since } \theta \text{ is in the first quadrant}) \] ### Step 2: Calculate \(\tan \theta\) \(\tan \theta\) is defined as: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Substituting the values we found: \[ \tan \theta = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = 1 \] ### Step 3: Calculate \( \tan \theta + \cos \theta \) Now we can compute \( \tan \theta + \cos \theta \): \[ \tan \theta + \cos \theta = 1 + \frac{1}{\sqrt{2}} \] ### Step 4: Find a common denominator To add these fractions, we convert \(1\) to a fraction with a denominator of \(\sqrt{2}\): \[ 1 = \frac{\sqrt{2}}{\sqrt{2}} \] Thus: \[ \tan \theta + \cos \theta = \frac{\sqrt{2}}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{\sqrt{2} + 1}{\sqrt{2}} \] ### Step 5: Final Answer The expression simplifies to: \[ \tan \theta + \cos \theta = \frac{1 + \sqrt{2}}{\sqrt{2}} \] Thus, the correct answer is: **D. \(\frac{1 + \sqrt{2}}{\sqrt{2}}\)** ---
Promotional Banner

Similar Questions

Explore conceptually related problems

costheta=1/sqrt(2) and tantheta=-1

sintheta=sqrt(3)/2 and tantheta=-sqrt(3)

sintheta=-1/2 and tantheta=-1/sqrt(3)

The value of sin 60 is: A. sqrt 1//2 B. sqrt 3//2 C. 1//sqrt 2 D. sqrt""1//sqrt""2

sintheta+costheta=sqrt(2)

If sintheta+costheta=sqrt(2)sintheta , then sintheta-costheta=?

sintheta+costheta=(sqrt(3)+1)/(2)

sqrt(3)costheta+sintheta=2

sintheta=-1/2 and costheta=-sqrt(3)/2

sqrt(3)sintheta-costheta=sqrt(2)