Home
Class 14
MATHS
If (2/3)P = (4/5)Q = (3/2)R, then what i...

If (2/3)P = (4/5)Q = (3/2)R, then what is P : Q : R?

A

`18 : 15 : 8 `

B

`15 : 8 : 18`

C

`2 : 4 : 3 `

D

`3 : 5 : 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( P : Q : R \) given that \( \frac{2}{3}P = \frac{4}{5}Q = \frac{3}{2}R \). ### Step-by-Step Solution: 1. **Set a common variable**: Let \( k \) be the common value such that: \[ \frac{2}{3}P = k, \quad \frac{4}{5}Q = k, \quad \frac{3}{2}R = k \] 2. **Express \( P \), \( Q \), and \( R \) in terms of \( k \)**: - From \( \frac{2}{3}P = k \): \[ P = \frac{3}{2}k \] - From \( \frac{4}{5}Q = k \): \[ Q = \frac{5}{4}k \] - From \( \frac{3}{2}R = k \): \[ R = \frac{2}{3}k \] 3. **Write the ratio \( P : Q : R \)**: Now we can express the ratio: \[ P : Q : R = \frac{3}{2}k : \frac{5}{4}k : \frac{2}{3}k \] Since \( k \) is common, we can cancel it out: \[ P : Q : R = \frac{3}{2} : \frac{5}{4} : \frac{2}{3} \] 4. **Convert to a common denominator**: The denominators are 2, 4, and 3. The least common multiple (LCM) of these numbers is 12. We will convert each fraction to have a denominator of 12: - For \( \frac{3}{2} \): \[ \frac{3}{2} = \frac{3 \times 6}{2 \times 6} = \frac{18}{12} \] - For \( \frac{5}{4} \): \[ \frac{5}{4} = \frac{5 \times 3}{4 \times 3} = \frac{15}{12} \] - For \( \frac{2}{3} \): \[ \frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \] 5. **Combine the ratios**: Now we can write the ratio: \[ P : Q : R = 18 : 15 : 8 \] ### Final Answer: Thus, the ratio \( P : Q : R \) is: \[ \boxed{18 : 15 : 8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (P)/(3) = (Q)/(4) = (R)/(5) , then P : Q : R is :

If P : Q = 2 : 3 and P : R = 4 : 5, then what is (P + Q) : (Q + R)?

IF P:Q=3/5:5/7, Q:R=3/4:2/5 then what is P:Q:R equal to

If (p ^(2) + q ^(2)) // (r ^(2) + s ^(2)) = (pq) //(rs), then what is the value of (p-q)/(p+q) in terms of r and s ?