Home
Class 14
MATHS
What is the value of sqrt(18-2sqrt(77))?...

What is the value of `sqrt(18-2sqrt(77))`?

A

`sqrt(11)+sqrt(7)`

B

`sqrt(12)-sqrt(5)`

C

`sqrt(11)-sqrt(7)`

D

`sqrt(13)-sqrt(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt{18 - 2\sqrt{77}} \), we can express the expression under the square root in a different form. ### Step-by-Step Solution: 1. **Identify the structure**: We notice that the expression \( 18 - 2\sqrt{77} \) resembles the form of a squared binomial, \( (a - b)^2 = a^2 - 2ab \). 2. **Set up the equation**: We can assume that \( \sqrt{18 - 2\sqrt{77}} \) can be expressed as \( \sqrt{(a - b)^2} = a - b \). Thus, we need to find \( a \) and \( b \) such that: \[ a^2 + b^2 = 18 \quad \text{and} \quad 2ab = 2\sqrt{77} \] 3. **Solve for \( ab \)**: From the second equation \( 2ab = 2\sqrt{77} \), we can simplify this to: \[ ab = \sqrt{77} \] 4. **Express \( b \) in terms of \( a \)**: We can express \( b \) as: \[ b = \frac{\sqrt{77}}{a} \] 5. **Substitute \( b \) into the first equation**: Substitute \( b \) into the first equation: \[ a^2 + \left(\frac{\sqrt{77}}{a}\right)^2 = 18 \] This simplifies to: \[ a^2 + \frac{77}{a^2} = 18 \] 6. **Multiply through by \( a^2 \)**: To eliminate the fraction, multiply through by \( a^2 \): \[ a^4 - 18a^2 + 77 = 0 \] 7. **Let \( x = a^2 \)**: This gives us a quadratic equation: \[ x^2 - 18x + 77 = 0 \] 8. **Use the quadratic formula**: The solutions for \( x \) are given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{18 \pm \sqrt{(-18)^2 - 4 \cdot 1 \cdot 77}}{2 \cdot 1} \] \[ = \frac{18 \pm \sqrt{324 - 308}}{2} = \frac{18 \pm \sqrt{16}}{2} = \frac{18 \pm 4}{2} \] 9. **Calculate the roots**: This gives us: \[ x = \frac{22}{2} = 11 \quad \text{and} \quad x = \frac{14}{2} = 7 \] 10. **Find \( a \) and \( b \)**: Thus, \( a^2 = 11 \) and \( b^2 = 7 \) (or vice versa). Therefore: \[ a = \sqrt{11}, \quad b = \sqrt{7} \] 11. **Final result**: Now substituting back, we have: \[ \sqrt{18 - 2\sqrt{77}} = \sqrt{11} - \sqrt{7} \] ### Conclusion: The value of \( \sqrt{18 - 2\sqrt{77}} \) is \( \sqrt{11} - \sqrt{7} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of sqrt(8 - 2 sqrt(15)) ?

What is the value of sqrt(23+2sqrt(130)) ?

What is the value of sqrt(121)+sqrt(12321)+sqrt(1234321)+sqrt(123454321)

If x gt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrtx-1) ?

What is the value of (sqrt(6)+sqrt(5))/(sqrt(6)-sqrt(5)) ?