Home
Class 14
MATHS
What is the value of (sqrt5-sqrt3)div(sq...

What is the value of `(sqrt5-sqrt3)div(sqrt5+sqrt3)`?

A

`4-sqrt15`

B

`6-2sqrt15`

C

`8-2sqrt15`

D

`4+sqrt15`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \((\sqrt{5} - \sqrt{3}) \div (\sqrt{5} + \sqrt{3})\), we can follow these steps: ### Step-by-Step Solution: 1. **Write the expression**: \[ \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} \] 2. **Multiply the numerator and denominator by the conjugate of the denominator**: \[ \frac{(\sqrt{5} - \sqrt{3})(\sqrt{5} - \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})} \] 3. **Simplify the denominator using the difference of squares formula**: \[ (\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2 \] 4. **Expand the numerator**: \[ (\sqrt{5} - \sqrt{3})^2 = (\sqrt{5})^2 - 2(\sqrt{5})(\sqrt{3}) + (\sqrt{3})^2 = 5 - 2\sqrt{15} + 3 = 8 - 2\sqrt{15} \] 5. **Combine the results**: \[ \frac{8 - 2\sqrt{15}}{2} \] 6. **Simplify the fraction**: \[ \frac{8}{2} - \frac{2\sqrt{15}}{2} = 4 - \sqrt{15} \] ### Final Answer: The value of \((\sqrt{5} - \sqrt{3}) \div (\sqrt{5} + \sqrt{3})\) is: \[ 4 - \sqrt{15} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt5+sqrt3)/(sqrt5-sqrt3)=

What is the value (sqrt(5)-sqrt(3))/(sqrt(5) + sqrt(3)) - (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) ?

(sqrt3-sqrt5)(sqrt5+sqrt3)

What is the value of sqrt(5sqrt(5sqrt(5sqrt(....oo))))

2/(sqrt5 - sqrt3)

2/(sqrt5 - sqrt3)

2/(sqrt5 - sqrt3)

2/(sqrt5 - sqrt3)

6/(sqrt5 + sqrt3)